Exploring Spatial and Temporal Gradients in Atmospheric CO₂ and CO Using *in Situ* Observations in the Los Angeles Megacity

K.R. Verhulst¹, F.M. Hopkins¹, R. Weiss², R. Keeling², J.B. Miller^{3,4}, S. Lehman⁵, C. Miller¹ and R. Duren¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; 818-393-5817, E-mail: Kristal.R.Verhulst@jpl.nasa.gov

²Scripps Institution of Oceanography, La Jolla, CA 92037

³Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

⁴NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO 80305 ⁵Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309

Global atmospheric observations show an unprecedented rise in atmospheric carbon dioxide (CO_2) levels since the pre-industrial period. This trend correlates with estimates of CO_2 emissions from global fossil fuel consumption during the same period. Anthropogenic fossil fuel carbon dioxide (FFCO₂) is defined as the mole fraction of CO_2 in dry air resulting from fossil fuel combustion relative to some pre-determined background concentration. Globally, urban regions account for roughly 70% of the fossil carbon emissions; therefore measurements in urban areas are critical for estimating FFCO₂ emissions. Linking urban atmospheric observations with fine-scale emissions data will help improve our understanding of the relationship between social, behavioral and economic activity and FFCO₂ emissions. Carbon monoxide (CO) has been widely used as a tracer for FFCO₂. CO is emitted during the incomplete combustion of fossil fuels and is thus closely linked to fossil fuel CO₂ emissions. However, atmospheric CO measurements alone do not give a quantitative estimate of FFCO₂ and require calibration using discrete radiocarbon (¹⁴CO₂) observations.

In this study, we use *in situ* measurements from a network of sensors in the Los Angeles (LA) megacity and its surrounding areas to explore spatial and temporal patterns in the surface mole fractions of carbon dioxide (CO₂) and carbon monoxide (CO). The LA network is part of the Megacities Carbon Project, which was established to develop and test robust techniques for monitoring distributions and trends of fossil carbon emissions in large cities (megacities.jpl.nasa.gov). The *in situ* data are used to estimate CO₂ and CO enhancements at the urban LA sites relative to the nearby background (outflow) sites (Figure 1). This work is complementary to an ongoing ¹⁴CO₂ flask-sampling project led by NOAA/GMD. The ¹⁴C flask sampling began at a subset of the LA sites in Fall 2014, with samples taken every 3-4 days. Future work will involve testing the use of CO as a tracer for excess FFCO₂ (Δ CO₂ff) in LA.

	Site number	Site name	Description	Gases measured
19	1	Granada Hills	Tower, foothills	CO ₂ /CH ₄ /CO
2000	2	Compton	Tower, Downtown 1	CO ₂ /CH ₄ /CO
and the second	3	San Clemente	Tower, Outflow 1	CO ₂ /CH ₄ /CO
	4	Victorville	Tower, Outflow 2	CO ₂ /CH ₄
e e	5	USC	Rooftop, Downtown 2	CO ₂ /CH ₄ /CO
Data LDEO-COlumbia, NSF, NOAA Image Landsat Data SIO, NOAA, U.S. Navy, NGA, GEBCO Data MSAI	6	Fullerton (CSUF)	Rooftop, Inland basin	CO ₂ /CH ₄ /CO

Figure 1. *In situ* measurement sites in the Los Angeles basin and surrounding areas. The red markers indicate the location of the tower sites and green markers indicate the location of the rooftop sites used in this study. All sites shown have continuous measurements of $CO_2/CH_4/CO$, with the exception of the Victorville tower, which has continuous CO_2 and CH_4 measurements.