Carbon Tetrachloride Emissions from the U.S. During 2008 - 2012

L. Hu^{1,2}, S. Montzka², B. Miller^{1,2}, A.E. Andrews², J.B. Miller^{1,2}, S. Lehman³, C. Sweeney^{1,2}, D. Godwin⁴, K. Thoning², H. Chen⁵, M. Fischer⁶, C. Siso^{1,2}, E. Atlas⁷, D. Blake⁸, J.A. de Gouw⁹, J.W. Elkins², B.D. Hall² and P.P. Tans²

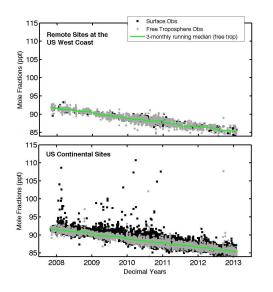
¹Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309; 303-497-5238, E-mail: lei.hu@noaa.gov

²NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO 80305

³Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309

⁴Environmental Protection Agency (EPA), Washington, DC 20004

⁵Centre for Isotope Research, University of Groningen, Groningen, Netherlands


⁶Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720

⁷University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 33173

⁸University of California at Irvine, Department of Chemistry, Irvine, CA 92697

⁹NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO 80305

Carbon tetrachloride (CCl_4) is a potent greenhouse gas and an ozone depleting substance. A 100% phase-out in CCl, production and consumption was implemented in the developed countries in 1996 and developing countries in 2010 due to the Montreal Protocol. Only production for non-emissive uses is still allowed, such as a feedstock or process agent, and in laboratory and analytical uses. One mystery that has persisted for more than a decade is why the global atmospheric CCl, mole fraction is declining slower than expected based on its atmospheric lifetime and estimated emission from the reported production data; are there unidentified sources of CCl.? If so, what do we know about these sources and their distribution? In the U.S., the U.S. Environmental Protection Agency (EPA) has been reporting zero emission since 1996. In the meantime, a few "top-down" studies also have reported approximately zero (0 - 0.5 Gg/y) emission of CCl₄ based on observations from short-term, localized-regional aircraft campaigns or two aircraft sites in the U.S. northeast and a correlation with a combustion tracer (i.e. CO or ${}^{14}CO_2$). However, atmospheric CCl₄ data from the U.S. portion of our Global Greenhouse Gas Reference Network suggest enhanced mole fractions at the surface relative to the free troposphere during 2008 - 2012 (Figure 1). This raises challenges to the previous findings. In this study, we will discuss the temporal and spatial variability of the surface enhancements of CCl, observed in our U.S. sampling network, possible sources for CCl₄ surface emissions, and the magnitude of total U.S. emissions of CCl₄ from the U.S. during 2008 – 2012 derived from inverse modeling. We will also present additional evidence from aircraft campaigns (e.g. TEXAQS) during which substantial CCl_4 enhancements were observed over the area where we infer relatively large emissions.

Figure 1. Observed atmospheric CCl_4 mole fractions in the free troposphere (grey) and the surface (< 1km agl) (black) at remote sites in the U.S. west coast (upper panel) and sites with more anthropogenic influence in the continental U.S. (lower panel).