Aerosol effects on cloud cover as determined by ground- and space-based sensors

John E. Ten Hoeve¹ and John A. Augustine²

¹National Weather Service, SSMC2, Silver Spring, MD ²Earth System Research Laboratory, Global Monitoring Division, Boulder, CO

43nd Global Monitoring Annual Conference, May 19-20, 2015

The problem

- The effect of aerosols on the extent of clouds (2nd indirect effect) remains one of the largest uncertainties in climate science
- From satellites, the detection of the <u>collective impact</u> of the microphysical and dynamical effects of aerosols on the macroscopic properties of clouds is possible, but...
- Neither satellites nor models can resolve the microphysical processes that contribute to the cloud fraction - aerosol optical depth (f_c-AOD) relationship

- Many studies have shown an increase in cloud fraction with AOD, particularly for AOD < 0.3 (beyond 0.3 AOD, the effect of AOD on cloud fraction approaches 0)
- However, part of that relationship could be from confounding effects:
 - Scattered radiation off of the sides of clouds
 - Aerosol humidification in the cloud's environment
 - Cloud contamination in the AOD retrievals
 - ✓ Vertical overlap of aerosols and clouds
 - Meteorological covariation
- It is difficult to separate out these effects with satellite data alone
- We believe that surface measurements are better poised to remove some of the confounding effects

We approached the 2nd indirect effect from the top and bottom

Data

- 2006 through 2011
- MODIS 10-km resolution 550-nm AOD retrievals over a 50 km² area centered on each SURFRAD site
- MODIS 5-km cloud fraction retrievals averaged over each 10-km AOD pixel
- SURFRAD cloud screened 500-nm AOD, interpolated to 550-nm using the Angstrom relationship, and cloud fraction from the Total Sky Imager
- AOD was restricted to values < 0.3, and only opaque cloud fractions were considered

Sun photometer measurements are sensitive to the transition zone near cloud edges

- Aerosols swell near cloud edges due to humidification
- There can be 3-D effects from scattered photons off of the sides of clouds

Aerosol Optical Depth Cloud screening

Table Mountain SURFRAD 26 June 2014

Composite AOD sorted by "time-to-cloud" for all SURFRAD sites considered (2006-2011)

6%-11% AOD enhancement near cloud

Quantification of the 2nd indirect effect

Quantification of aerosol forcing at the surface Data used: AOD < 0.3 and corrected for near-cloud effects

Solar zenith angle	Net solar radiative	Net Total solar+IR
	forcing (W/m ²)	radiative forcing (W/m ²)
15° - 25°	-67	-30
25° - 35°	-53	-17
35° - 45°	-48	-11
45° - 55°	-52	-20
55° - 65°	-38	-10
65° - 75°	-47	-19
75° - 85°	-14	+7
Weighted average ove all solar zenith angles	r -51	-19

Summary

- All stations show cloud fraction increasing with AOD: $\Delta f_c / \Delta \tau$ ranges from 0.12 to 0.59, mean 0.37 (AOD < 0.3)
- The cloud fraction-AOD relationship is ~42% greater when confounding effects in AOD retrievals <u>are not</u> removed.
- Satellite data gives the same result as cloud-contaminated AODs, therefore satellite-based studies may overestimate the magnitude of the 2nd indirect effect by ~42%
- On average, aerosols over the U.S. reduce surface net solar radiation by 51 Wm⁻² and surface total net radiation by 19 Wm⁻², and therefore have an overall cooling effect

Meteorological covariation

Tested: Air temperature Wind speed Relative humidity Sea level pressure

Composite Angstrom exponent sorted by "time-to-cloud"

