

Measuring Methane Emissions from Oil and Natural Gas Well Pads in the Barnett Shale Using the Mobile Flux Plane Technique

Graham Leggett, Chris W. Rella^{*}, Tracy R. Tsai, Connor G. Botkin, Eric R. Crosson, David Steele

NOAA GMD 2015

PICARRO

Methane Emissions in the Barnett Shale

- Natural Gas in the Barnett Shale
 - ~8% of total US natural gas production (2013)
 - ~17,500 production well pads (2013)
- Barnett Coordinated Campaign (October 2013) EDEC

Motivation: Why Measure Well Pad Emissions

- There are about 500,000 natural gas wells in the U.S.
- Well pads during routine production (i.e., not including drilling and well completion) account for about 2% of total natural gas production [1]
- The distribution of emission rates from well pads is a skewed distribution, with a relatively small number of well pads contributing the bulk of the emissions
- Our Goal: To develop a simple, rapid, and accurate method for quantifying well pad emissions to identify the largest emitters

[1] Howarth, R. W., Santoro, R., & Ingraffea, A. (2011). Methane and the greenhouse-gas footprint of natural gas from shale formations. *Climatic Change*, *106*(4), 679-690.

ΡΙCΔRRΟ

Mobile Flux Plane: Create a Virtual Net to "Catch" the Methane

Calculating the Emission Rate

- The 2D concentration image plus the vertical wind profile is used to calculate the emission rate
- No atmospheric transport model or knowledge of emission location is required for the calculation

Controlled Release Validation Experiments

• Measurements under different atmospheric stability classes (A, B, C, and D) and different surfaces (high grasses, hard-packed earth, low grasses, paved surface)

Parameter	Conditions	Comments
	min – max (mean ±std. dev.)	
Distance to source	$5 - 81 \text{ m} (34 \pm 15 \text{ m})$	
Release Height	$1 - 3.66 \text{ m} (2.2 \pm 0.9 \text{ m})$	Measurements above 3 meters were made on top of a \sim 2 m tall trailer to simulate a tank leak
Methane Flow Rate	$0.43 - 2.14 \text{ kg} / \text{hr} (1.07 \pm 0.69 \text{ kg} / \text{hr})$	
Wind Speed	$1.0 - 16 \text{ m / s} (3.6 \pm 2.95 \text{ m/s})$	

Integration Methods – Validation Experiments

- Plume integrated horizontally (along path of vehicle)
- Two methods of vertical plume integration:
 - -Trapezoidal integration
 - -Ground reflected Gaussian plume model with vertical width and center as fit parameters PICΔRRO

Validation Experiments Results

Emeas / Eact = $1.0 \rightarrow$ ideal

- Trapezoidal integration (TRAP): mean = 0.77; 1-sigma range: 0.40 1.47
- Gaussian Plume Fit (GF): mean 1.07; 1-sigma range: 0.56 2.04; 2sigma range: 0.29 – 3.9

ΡΙΟΔ R R Ο

Barnett – well pad study methodology

- Driving path randomly selected from Barnett region, based on wind direction and proximity of well pads to public roads
- Emissions were quantified for all detected plumes (N = 207). Data selection criteria were applied for
 - wind speed > 1 m/s (N = 200)
 - plume attributable to a single well pad (N = 177)
 - distance to well pad < 150 m (N = 150)
 - centroid of the Gaussian plume fit was below the top inlet (N = 142)
 - vertical width from the Gaussian plume fit was less than 5 m (N = 115)
- 37% of well-pads upwind of the vehicle track and within a nominal distance of about 90 meters of the vehicle had NO detectable emissions

ΡΙCΔRRO

Barnett – Distribution of Emissions

- For all leaks with detectable emissions, the arithmetic mean of the distribution is 1.63 kg / hr,
 - 1-sigma (67%) range of
 0.46 5.7 kg / hr
 - 2-sigma range (95%) of
 0.13 20 kg / hr
- The distribution of the emissions is much broader than the measured precision from the validation experiments

Well Pads: Distribution of Emissions

- 10% of the total emissions is from the top 0.3% of the sources
- 20% of the total emissions is from the top 1.1% of the sources
- 50% of the total emissions is from the top 6.6% of the sources
- 80% of the total emissions is from the top 22% of the sources
- The bottom 50% of the sources contribute less than 2% of the total emissions.

Thank You!

