An Ultra-stable and High-precision N₂O/CO Analyzer for Continuous Ambient Monitoring

F. Dong, J. Zhou, J. Hoffnagle, S. Tan, G. Leggett, C. Rella, Y. He, Y. Huang and D. Kim-Hak

Picarro Inc, Santa Clara, CA 94054; 408-962-3906, E-mail: fdong@picarro.com

With a global warming potential of nearly 300 times that of carbon dioxide (CO₂) at a 100-year time horizon, nitrous oxide (N₂O) has become a critically important greenhouse gas with a contribution of ~5 % of the U.S. total GHG emissions. It is also well-known that N₂O has been one of the most important species that has been causing stratospheric ozone depletion and will be remain in the atmosphere for centuries due to its long life time. Agriculture soil management practices are the dominant source of anthropogenic N₂O emissions, contributing nearly 75 % of U.S. N₂O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N₂O. However, the variation of N₂O in the atmosphere is very small with an average growth rate of <0.8 ppb per year. Therefore, an inter-laboratory comparability goal of ±100 ppt is recommended by WMO for ambient monitoring of N₂O.

We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to simultaneously measure two key greenhouse gas species, N_2O and carbon monoxide (CO) with both high precision and high stability. It combines a quantum cascade laser with a 3-mirror optical cavity. Over an 8-day continuous measurement of a stable source without any calibration, the peak-to-peak variation is 53 ppt for CO and 33 ppt for N_2O . With such a high precision and unparalleled stability, the analyzer is a promising tool for long-term global monitoring of N_2O/CO in ambient air.

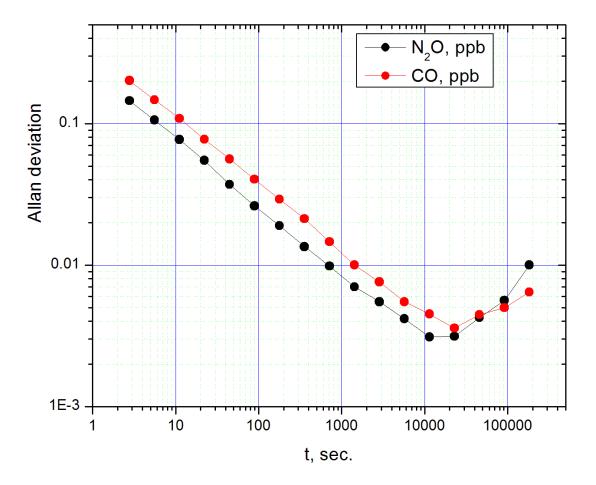


Figure 1. Allan Deviation plot of measured N₂O and CO in dry air.