
Assimilation of GOSAT XCO₂ Retrievals in CarbonTracker

J. Kim¹, H.M. Kim¹ and C. Cho²

¹Yonsei University, Department of Atmospheric Sciences, Seoul, South Korea; 82-2-2123-4815, E-mail: adcaelum@yonsei.ac.kr ²National Institute of Meteorological Research, Jeju, South Korea

In this study, surface carbon dioxide (CO_2) fluxes were estimated by assimilating column-averaged dry air mole fraction (XCO_2) of satellite-based CO_2 measurements into the CarbonTracker (CT2013B) which is an inverse modeling system for estimating surface CO_2 flux based on an ensemble Kalman filter. The XCO_2 used was derived from Atmospheric CO_2 Observations from Space retrievals of the Greenhouse Gases Observing SATellite (ACOS-GOSAT). The inversion experiments were conducted with and without GOSAT XCO_2 retrievals in addition to conventional surface CO_2 concentration measurements.

Figure 1 shows the average biosphere and ocean CO₂ fluxes from July 2009 to May 2010. The results show that the global balance of sources and sinks of surface CO_2 fluxes was maintained for the experiments with and without GOSAT XCO₂, whereas the magnitudes of the optimized surface CO₂ fluxes in subcontinental regions were changed. The surface CO₂ uptake over Europe increased, whereas the surface CO₂ uptake in Eurasian Boreal (Northern part of Asia continent) decreased. These results are consistent with the previous studies using GOSAT XCO₂ retrievals to estimate surface CO₂ fluxes. The modeled XCO₂ simulated by the optimized surface CO₂ fluxes with GOSAT XCO₂ were more consistent with the GOSAT XCO₂ compared to the modeled XCO₂ without GOSAT XCO₂, which implies that data assimilation system developed for satellite observations performed appropriately.

Figure 1. Average biosphere and ocean CO_2 fluxes (gC m⁻² yr⁻¹) from July 2009 to May 2010 inferred from (a) only conventional surface CO_2 concentration observations and (b) GOSAT XCO₂ retrievals in addition to conventional surface CO_2 concentration observations.