Methane Emissions from the 2015 Aliso Canyon Blowout in Los Angeles, CA

S. Conley^{1,2}, G. Franco³, I. Faloona², D. Blake⁴, J. Peischl^{5,6} and T.B. Ryerson⁶

¹Scientific Aviation, Roseville, CA 95661; 916-217-1107, E-mail: sconley@scientificaviation.com

⁶NOAA Earth System Research Laboratory, Chemical Sciences Division (CSD), Boulder, CO 80305

Single-point failures of the natural gas infrastructure can hamper deliberate methane emission control strategies designed to mitigate climate change. The 23 October 2015 blowout of a well connected to the Aliso Canyon underground storage facility in California resulted in a massive release of natural gas. Analysis of methane (CH_4) and ethane (C_2H_6) data from dozens of plume transects from 13 research aircraft flights between 7 Nov 2015 and 13 Feb 2016 shows atmospheric leak rates of up to 60 metric tonnes of CH_4 and 4.5 metric tonnes of C_2H_6 per hour. At its peak this blowout effectively doubled the CH_4 emission rate of the entire Los Angeles Basin, and in total released 97,100 metric tonnes of methane to the atmosphere.

Figure 1. IR camera image of leaking CH₄ plume from Aliso Canyon well SS-25. Image courtesy of Environmental Defense Fund.

²University of California at Davis, Davis, CA 95616

³California Energy Commission, Sacramento, CA 95814

⁴University of California at Irvine, Department of Chemistry, Irvine, CA 92697

⁵Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309