

Infrared Spectra and Radiative Efficiencies of Atmospherically Persistent Perfluoroamines: $N(C_xF_{2x+1})_3$, x = 2-5

Francois Bernard.^{1,2} Vassileios C. Papadimitriou.^{1,2,3} and James B. Burkholder¹ ¹National Oceanic and Atmospheric Administration (NOAA), Earth Systems Research Laboratory, Chemical Sciences Division, Boulder, CO, USA ²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

³Laboratory of Photochemistry and Chemical Kinetics, Dept. of Chemistry, U. of Crete, Vassilika Vouton, 71003, Heraklion, Crete, Greece

1 INTRODUCTION

3 RESULTS

Perfluorinated amines (N(CxF2x+1)3, PFAm) are persistent greenhouse gases

- (C₄F₆)₃N has a reported radiative efficiency of 0.86 W m⁻² ppb⁻¹ (Hong et al. 2013)
- (C₄F_a)₃N mixing ratio of 0.18 ppt observed in urban Toronto, Canada (Hong et al., 2013) ((C₄F₆)₂N used in heat transfer and electronics testing)
- · Other PFAms have not been observed to date
 - Atmospheric loss processes and lifetimes for PFAms are NOT well characterized
- · Atmospheric lifetimes are expected to be >250 years

Objectives of This Study

Laboratory measurements used to evaluate key atmospheric metrics for this class of compounds

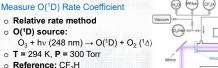
Global Warming Potential (GWP)

Radiative efficiencies (RE)

Int RF_{CO}(T)

Infrared spectroscopy

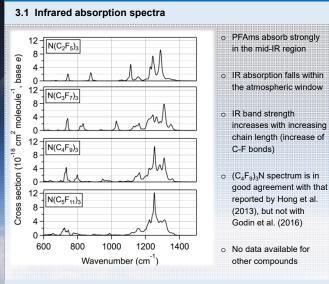
T: Time Horizon

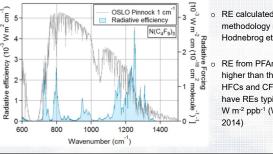

Atmospheric lifetimes (τ)

Atmospheric loss processes: UV photolysis, O(1D) reaction

2 EXPERIMENTAL DETAILS

- Infrared Spectroscopy-Measure infrared absorption spectra Spectral range: 600-4000 cm⁻¹ Detector: HqCdTe (MCT) Resolution: 1 cm⁻¹ o Pathlength: 15, 185 and 455 cm Temperature: 294 K o Total pressure: 10-600 Torr (He bath gas) - UV Photolysis -Pure or diluted Measure UV absorption spectra o Light source: Deuterium lamp o λ range of interest: 195-235 nm - O(1D) Reaction -


KrF Excimer lase (i. = 248 nm)


 $k(CF_3H+O(^{1}D)) = 2.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

o T = 294 K

(Burkholder et al., 2015)

3.2 Radiative efficiencies (RE)

Compound	Chemical formula	RE* (W m ⁻² ppb ⁻¹)	Reference
Perfluorotripropylamine	N(C ₃ F ₇) ₃	0.74	This work
Perfluorotributylamine	$N(C_4F_9)_3$	0.87	This work
		0.77	Godin et al. (2016)
		0.86	Hong et al. (2013)
Perfluorotripentylamine	N(C ₅ F ₁₁) ₃	0.80	This work
HFC-134a	CH ₂ FCF ₃	0.16	WMO (2014)

PFAms have very high RE values and are potent greenhouse gases (GHGs)

4 DISCUSSION AND ATMOSPHERIC IMPLICATIONS

4.1 Atmospheric Lifetime (τ) Evaluation 1 _ 1 _ 1 _ 1 τ_{Total} τ_{O(1D)} τ_{UV} τ_{Lyman-α} PFAm loss expected to be in the upper atmosphere (Stratosphere / Mesosphere) 4.2 Atmospheric Loss Processes Preliminary Laboratory Results UV photolysis O(¹D) reaction 0.2 0.15 0 10 200 220 0.15 0.05 0.10 In(ICF_HI_JCF_HI) Weak absorption in the critical $k((C_5F_{11})_3N) = 2.55 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ actinic region (200-220 nm) k(C₃F₇)₃N < 0.3×10⁻¹² cm³ molecule⁻¹ s⁻¹ Sample purity a possible issue Studies for other compounds ongoing Additional Studies: Lyman-α and Photodissociation measurements Preliminary results indicate that UV photolysis may be the predominant atmospheric loss process for PFAms

RE calculated using the methodology reported in Hodnebrog et al. (2013)

- RE from PFAm are higher than those of HECs and CECs which have REs typically ≤ 0.3
- W m⁻² ppb⁻¹ (WMO,

5 FUTURE RESEARCH DIRECTIONS · Theory (Gaussian)

- · Identify infrared bands
- Evaluate trends in infrared spectra

Atmospheric 2-D Modeling

- · Quantify atmospheric loss processes
- · Identify regions of atmospheric loss
- · Determine global and local lifetimes
- · Field observations · Detection/sensitivity analysis
 - · Identification of PFAms in background and urban environments

· Laboratory Studies

- Cvclic compounds (e.g. morpholines)
 - Non-symmetric PFAms
 - $(N(C_xF_{2x+1})(C_vF_{2v+1})(C_zF_{2z+1}))$

ACKNOWLEDGEMENTS

This work was supported in part by NOAA's AC4 Program and NASA's Atmospheric Composition Program

REFERENCES

- Burkholder et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18
- JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, 2015 Godin et al., Strong Temperature-dependent absorption cross-sections of perfluorotributylamine, J. Mol. Spec
- 2016
- Hong et al., Perfluorotributylamine: A novel long-lived greenhouse gas, Geophy. Res. Lett., 40, 6010-6015, 2013
 Hodnebrog et al., Global warming potentials and radiative efficiencies of halocarbons and related compounds: A
- comprehensive review, Rev. Geophys., 51, 300-378, 2013
- · WMO (World Meteorological Organization), Scientific assessment of ozone depletion: 2014, global ozone research and monitoring project - report No. 55, Geneva, Switzerland, 2014