

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Office of Meteorology and Climatology MeteoSwiss

Traceability of Measurements within the Global Atmosphere Watch Programme: Results from the World Calibration Centre WCC-Empa

<u>Christoph Zellweger</u>¹, Martin Steinbacher¹, Lukas Emmenegger¹, Brigitte Buchmann² ¹Empa, Laboratory for Air Pollution/Environmental Technology, Dübendorf, Switzerland ²Empa, Department Mobility, Energy and Environment, Dübendorf, Switzerland

NOAA ESRL Global Monitoring Annual Conference 2016

International GAW Activities of Switzerland

WCC-Empa (O₃, CO, CH₄, CO₂)

Audits by WCC-Empa from 1996 - 2016

 \triangle O₃/CO/CH₄/CO₂ \triangle O₃/CO/CH₄ \triangle O₃/CO \triangle O₃ \triangle Not yet audited \bigcirc Calibration Facilities # Year(s) of audit(s)

Audits: Travelling Standards vs. Parallel Measurements

- Only instrument comparison
- Snapshot in time
- Special care might influence results
- © Covers wider mole fraction range
- Repeatability conditions

- © Assessment of the whole system
- Conger time period
- Less influence by operator
- Limited to ambient mole fraction range

Explanation for the following figures...

Explanation for the following figures...

Explanation for the following figures...

GHG: Relationship performance – analytical technique

Results for GHGs were recently published:

C. Zellweger et al., Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations, Atmos. Meas. Tech. Discuss., 2016, 1-30, 2016.

RG: Relationship performance – analytical technique

- Ozone: >50 % of the comparisons were within 1 ppb over the range 0-100 ppb.
- Almost all measurements are done using UV absorption technique.
- Cases with lager deviations usually either due to inappropriate calibration or instrument faults.

 CO remains challenging, although significant improvement is observed when newer techniques are used

Parallel Measurements for CO at Ushuaia

- Station instrument: HORIBA APMA-360
- Travelling instrument: Picarro G2401 without sample air drying
- From 2016-02-05 to 2016-05-10
- Travelling instrument used independent inlet lines to same sampling location

Ushuaia – HORIBA APMA-360

- Reason for bias?
- Difference in calibration scale? not confirmed by performance audit results
- Remaining bias due to water vapor correction of the Picarro G2401 instrument?
- Instrumental issues of the HORIBA APMA-360 instrument, e.g. pressure dependence leading to inappropriate zero correction.

<WMO-X2014> (ppb)

Ushuaia – HORIBA APMA-360

- Reason for bias?
- Difference in calibration scale? not confirmed by performance audit results
- Remaining bias due to water vapor correction of the Picarro G2401 instrument?
- Instrumental issues of the HORIBA APMA-360 instrument, e.g. pressure dependence leading to inappropriate zero correction.

Ushuaia – HORIBA APMA-360

Deviation to WCC-Empa [ppb]

- Reason for bias?
- Difference in calibration scale? not confirmed by performance audit results
- Remaining bias due to water vapor correction of the Picarro G2401 instrument?
- Instrumental issues of the HORIBA APMA-360 instrument, e.g. pressure dependence leading to inappropriate zero correction.

Cape Point: Picarro G2302

- Station instrument: Picarro G2302
- Travelling instrument: Picarro G2401 without sample air drying
- From 2015-10-22 to 2016-02-24
- Travelling instrument used independent inlet lines to same sampling location and occasionally sampled from CPT inlet after drier

Cape Point – Picarro G2302

- Very good agreement for the first two months of the comparison, in agreement to performance audit results.
- However, a difference between the two inlets was observed. The travelling instrument Picarro G2401 was recording higher mole fractions when sampling dry air from the Cape Point inlet.
- This is in line with a potential influence of water vapor on CO that was observed for this particular instrument.

Cape Point – Picarro G2302

- Very good agreement for the first two months of the comparison, in agreement to performance audit results.
- However, a difference between the two inlets was observed. The travelling instrument Picarro G2401 was recording higher mole fractions when sampling dry air from the Cape Point inlet.
- This is in line with a potential influence of water vapor on CO that was observed for this particular instrument.

Cape Point – Picarro G2302

Deviation to WCC-Empa TI [ppb]

- Very good agreement for the first two months of the comparison, in agreement to performance audit results.
- However, a difference between the two inlets was observed. The travelling instrument Picarro G2401 was recording higher mole fractions when sampling dry air from the Cape Point inlet.
- This is in line with a potential influence of water vapor on CO that was observed for this particular instrument.

Jungfraujoch: Los Gatos LGR-23r

- Station instruments: Los Gatos LGR-23r (and Picarro G2401)
- Travelling instrument: Picarro G2401 without sample air drying
- From 2015-03-19 to 2015-05-29
- Travelling instrument used independent inlet lines to same sampling location plus additional inlet at a different location

Jungfraujoch – LGR-23r

Deviation to WCC-Empa TI [ppb]

Good agreement over the entire comparison period, in agreement to performance audit results.

Jungfraujoch – LGR-23r

Deviation to WCC-Empa TI [ppb]

Advantage of Parallel Measurements

 A significant influence of the tourists and/or other emissions can be occasionally observed during calm days.

Date/Time [YY-MM-DD hh:mm, UTC+1]

Advantage of Parallel Measurements

 A significant influence of the tourists and/or other emissions can be occasionally observed during calm days.

Date/Time [YY-MM-DD hh:mm, UTC+1]

Advantage of Parallel Measurements

 A significant influence of the tourists and/or other emissions can be occasionally observed during calm days.

Date/Time [YY-MM-DD hh:mm, UTC+1]

Conclusions

- Audit approach with parallel measurements AND standard comparisons is optimal.
- Audit results confirm advantages of more recent measurement techniques in the case of CO.
- Calibration scale issues are likely to contribute to the observed difference; however, this explains only a small part of the observed bias in many cases.
- Recent progress made in the calibration scale (WMO-X2014A) will further improve compatibility of measurements.
- Ozone: Basically only one measurement technique in contrast to other species.
- An improvement was observed over the past few year thanks to slightly better instruments and probably also as a result of QA/QC activities.
- Relatively good agreement of is based on instrument comparisons only.
- Maybe it would also be desirable to have parallel ozone measurements during audits and other QA/QC activities.

Thank you!

Acknowledgments

Financial support by MeteoSwiss

Staff at various GAW stations for their support