Optical properties of black and brown carbon and their contribution to aerosol light absorption

Sang-Woo Kim

School of Earth and Environmental Sciences, Seoul National University sangwookim@snu.ac.kr

Contributed by:
Chaeyoon Cho, Meehye Lee, Saehee Lim, Wenzheng Fang, Örjan Gustafsson, August Andersson, Rokjin J. Park and Patrick J. Sheridan

Black Carbon (BC) and Brown Carbon (BrC)

Direct radiative forcing by Black Carbon (BC)

Direct radiative forcing by Brown Carbon (BrC)

0.001	0.01	0.1	1

[Myhre et al., 2013]

Absorption Coefficient $\left[\mathbf{m}^{-1}\right]=$ Mass $\left[g \mathrm{~m}^{-3}\right] \times$ Mass Absorption Cross-Section [MAC; $\mathbf{m}^{2} \mathbf{g}^{-1}$]

- MAC of $7.5 \pm 1.2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ for fresh BC [Bond and Bergstrom, 2006] is adapted to most global aerosol models.
- Some models have also used a broad range of $\mathrm{MAC}_{\mathrm{BC}}$ ranging from 2.3 to $18 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ to account for the decoating or coating-enhancement of ambient BC absorption.

Outline

Surface In-situ measurements

- Characterize the light absorption optical properties of BC and BrC from field measurements
- Estimates of MAC of BC ($\mathrm{MAC}_{\mathrm{BC}}$) and $\mathrm{BrC}\left(\mathrm{MAC}_{\mathrm{BrC}}\right)$
- Determine the contributions of $B C$ and BrC to total aerosol light absorption coefficient

Column AERONET measurements

- Constrain the AOD and AAOD of BC and BrC over East Asia
- Determine the contributions of BC and BrC to AAOD

In-Situ Aerosol Light Absorption Measurements during GoPoEx 2014

- Aerosol Absorption Coefficient (Aethalometer, CLAP, COSMOS)
- EBC Mass Concentration (Aethalometer)
- Aerosol Scattering Coefficient (Nephelometer)
- OC, EC mass concentration
(Sunset OC/EC analyzer \& PM2.5 sampler)
- Carbon Isotope Analysis

Carbon Isotope Analysis

Aerosol Light Absorption Properties during GoPoEx 2014

Light Absorption Measurements by CLAP and COSMOS

CLAP Absorption Coefficient $\left(\mathrm{Mm}^{-1}\right)$

$\mathrm{MAC}_{\mathrm{BC}}$

MAC $_{\mathrm{BC}}(565 \mathrm{~nm})$
$=\frac{\sigma_{\mathrm{ap}}^{\operatorname{CoSMOS}}(565 \mathrm{~nm})}{\mathrm{EC} \text { mass conc. }}$
$=6.4 \mathrm{~m}^{2} \mathrm{~g}^{-1}$

$\mathrm{MAC}_{B C}$ observed in Urban Areas

Abundant primary BC + Co-emitted non BC constituents from motor vehicles, industrial factories, heating (winter)

Beijing: $158.5 \mu \mathrm{~g} \mathrm{~m}^{-3}$

Xi'an: $345.1 \mu \mathrm{~g} \mathrm{~m}^{-3}$

Shanghai: $90.7 \mathrm{\mu g} \mathrm{~m}^{-3}$

Guangzhou: $69.1 \mu \mathrm{~g} \mathrm{~m}^{-3}$

Composition (\%)
OM
Nitrate
Sulphate
Ammonium
Chloride
Measured trace elements
EC
Unidentified

Sources/factors (\%)

- Traffic

Coal burning

- Biomass burning

Cooking
Dust related
Secondary organic-rich

- Secondary inorganic-rich

Coating-enhancement of BC absorption

$\mathrm{MAC}_{\mathrm{Bc}}$ observed in Background Sites

Coating enhancement during long-range transport ?

Coating effect of BC absorption by BrC

[Lack et al, ACP, 2010]

Less coagulation \& partial evaporation of the coating materials under dry conditions
[Leung et al., EST, 2017]

Coating without restructuring ($<12 \%$ RH)

Coating and restructuring (60% RH)
$\chi=1$

Mass growth factor (Gfm)

$$
\begin{aligned}
& \operatorname{MAC}_{\mathrm{BrC}}^{\mathrm{insitu}}(565 \mathrm{~nm}) \\
& =\frac{\Delta \sigma_{\mathrm{ap}}(565 \mathrm{~nm})}{\mathrm{M}_{\mathrm{BrC}}} \\
& =\frac{\Delta \sigma_{\mathrm{ap}}(565 \mathrm{~nm})}{\mathrm{M}_{\mathrm{eBC}}-\mathrm{M}_{\mathrm{BC}}} \\
& =\frac{\Delta \sigma_{\mathrm{ap}}(565 \mathrm{~nm})}{\mathrm{M}_{\mathrm{eBC}}-\left(\sigma_{\mathrm{ap}}^{\text {CoSMOS }} \div \mathrm{MAC}_{\mathrm{BC}}\right)} \\
& =0.62 \mathrm{~m}^{2} \mathrm{~g}^{-1}
\end{aligned}
$$

Water-extracted $\mathrm{BrC}\left(\mathrm{MAC}_{\mathrm{BrC}}^{\mathrm{WSOC}}\right)$

Methanol-extracted $\operatorname{BrC}\left(\mathrm{MAC}_{\mathrm{BrC}}^{\mathrm{MeOH}}\right)$

$$
\begin{aligned}
& \operatorname{MAC}_{\mathrm{BrC}}^{W S O C}(565 \mathrm{~nm}) \\
& =\frac{\Delta \sigma_{\mathrm{ap}}(565 \mathrm{~nm})}{\mathrm{M}_{\mathrm{WSOC}}}=0.7 \mathrm{~m}^{2} \mathrm{~g}^{-1}
\end{aligned}
$$

- All the results given in here have substantial experimental (e.g., in-situ/ex-situ optical absorption measurement) and analytical (e.g., extraction of BrC) uncertainties, in addition to a lack of understanding of the sources, chemical transformations, and associated optical properties (e.g., photo-bleaching effect; Fang et al., 2017) of BrC.

SCIENCE ADVANCES | RESEARCH ARTICLE

ATMOSPHERIC SCIENCE

Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow

Sanjeev Dasari ${ }^{1}$, August Andersson ${ }^{1}$, Srinivas Bikkina ${ }^{1}$, Henry Holmstrand ${ }^{1}$,
Krishnakant Budhavant ${ }^{1,2,3}$, Sreedharan Satheesh ${ }^{3}$, Eija Asmi ${ }^{4,5}$, Jutta Kesti ${ }^{4}$, John Backman ${ }^{4}$, Abdus Salam ${ }^{6}$, Deewan Singh Bisht ${ }^{7}$, Suresh Tiwari ${ }^{7}$, Zahid Hameed ${ }^{2,8}$, Örjan Gustafsson ${ }^{1 *}$

Fig. 5. Bounding the light absorption of WS-BrC in the South Asian outflow.

Contribution of BC and BrC to Light Absorption Coefficient

BrC contribution estimates

- Yang et al., 2009: 10 \% at visible wavelength
- Bahadur et al., 2012: less than 10% at 675 nm
- Feng et al., 2013: 18 \% at 500 nm

Contribution to Total Absorption - Project Median

[Yang et al., ACP, 2009]

Column Aerosol Light Absorption from AERONET

- Aerosol optical depth (AOD) and absorption AOD (AAOD) at multiple wavelengths
- AOD and AAOD are more closely related to the column abundance of $B C$ and $B r C$

- BrC primarily absorbs solar radiation at nearultraviolet wavelengths, and has negligible to weak light absorption at longer wavelengths.
- BrC's AÅE significantly differs from that of $B C$.

Wavelength Dependency of Absorption for BC and BrC

1) Removed the dust absorption by the wavelength dependency of absorption for dust particles, because the dust AOD is nearly wavelength independent, and dust AAOD increases steeply at shorter wavelengths compared with carbonaceous aerosols (Russell et al., 2010; Bahadur et al., 2012; Chung et al., 2012b).
2) The $A A O D$, calculated as " $A A O D=(1-S S A) \times A O D$ ", was separated to the individual contributions of $B C\left(A A O D_{B C}\right)$ and $\operatorname{BrC}\left(A A O D_{\text {BrC }}\right)$ using their spectral dependence on absorption, normally represented by the absorption Ångström exponent (AÅE; the so-called "AÅE approach;" Bahadur et al., 2012; Chung et al., 2012b).
3) The $A A O D$ for $B C\left(A A O D_{B C}\right)$ and $\operatorname{BrC}\left(A A O D_{B r C}\right)$ were finally converted into the $A O D$ for $B C\left(A O D_{B C}\right)$ and $\operatorname{BrC}\left(A O D_{B r c}\right)$, respectively, by using the SSA for BC and BrC suggested by Magi et al. (2009) and Chung et al. (2012).

Contribution of BC and BrC to AAOD

Contribution of BC and BrC to AAOD as a function of Wavelength

Short Summary

- Aerosol absorption coefficient from COSMOS was approximately 15-20\% lower due to volatile light-absorbing ("BrC") aerosols.
- The MAC of BC and BrC was estimated to be $6.4 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ and $0.62 \mathrm{~m}^{2}$ g^{-1} from in-situ aerosol measurements during GoPoEx 2014, respectively.
- The contribution of BC to total aerosol light absorption coefficient at 565 nm was estimated to be $\mathbf{8 8} \%$, while BrC accounted for 12%.
- The contribution of BC and BrC to AAOD at 550 nm , constrained by AERONET observations at 14 sites by using different spectral dependences, was estimated to be $\mathbf{8 5 \%}$ and 15%, respectively.
- A high BC contribution to AAOD appeared in urban sites, whereas the contribution of BrC to AAOD was higher in background sites.

Aerosol Light Absorption Properties during GoPoEx 2014

- Absorption coefficient difference ($\Delta \sigma_{\mathrm{ap}}$; i.e., BrC absorption) is calculated by:

$$
\Delta \sigma_{a p}=\sigma_{a p}(C L A P)-\sigma_{a p}(C O S M O S)
$$

- Temporal variation of BrC absorption is well match with OC mass concentration.

Discrepancy between modeled and observed absorption enhancement

Contribution of BC and BrC to AAOD as a function of Wavelength

