Trace Gas Observations from Small Research Aircraft over the Mid Atlantic States and Hebei, China

Russell R. Dickerson et al. The University of Maryland NOAA ESRL Global Monitoring 22 May 2019

Outline

Methods evaluation.

Greenhouse gases in Baltimore/Washington area & Marcellus upwind.

Preliminary results form New York City.

Results for CFCs over Hebei, China.

UMD Cessna 402B Research Aircraft

Heavy lifting: Xinrong Ren

GPS Position (Lat, Long, Altitude) Met (T, RH, P, wind speed/direction) Trace gases:

O₃: UV Absorption, modified TECO SO₂: Pulsed Fluorescence, modified TECO $CH_4/CO_2/CO/H_2O$: Cavity Ringdown, Picarro NO₂: Cavity Ring Down, Los Gatos NO: Chemiluminescence, modified TECO **HCHO: Fluorescence, NASA VOCs: whole air samples Aerosol Optical Properties:** Scattering: b_{scat} (@450, 550, 700 nm), Nephelometer Absorption: b_{ap} (565 nm), PSAP

Black Carbon: Aethalometer (370-950 nm)

What's our precision? Cessna Test Flight on 2/14/2019 Objectives: Picarro & wind calibration.

Picarro GHGs Measurement Precision at Altitude

Feed the Picarro analyzer compressed air with constant [CO₂], [CH₄], and [CO].

NIST support

Picarro GHG Measurement Altitude Test (1-sec data $\pm \sigma$)

Picarro GHG Measurement Altitude Test

From 8000 ft. (2.4km) to ground before landing

We replaced a bad wind system. Measurements from UMD Cessna over a Profiler

Published results so far, methane.

- CH₄ emissions from Baltimore-Washington area 8.66 ± 4.17 kg/s (2015) and 9.14 ± 4.49 kg/s (2016) or about 0.28 Tg/yr (Ren et al. JGR 2018). Compare to 0.84 Tg/yr for 5 cities (Plant et al. later today).
- CH₄ emissions from SW Marcellus 21.2 kg/s (0.66Tg/yr); 28% from O&NG (Ren et al. JGR 2019).
- CH₄ emissions from SW Marcellus ~0.5% of production; ratioing to C₂H₆ (Barkley et al. GRL 2019).
- Methane leak rates <1% of NG production, but total emissions much higher than inventories.

Published & submitted results so far, CO₂

- Aircraft mass balance emissions fossil CO₂ = 2.3±0.5 TgC/mo in Baltimore-Washington in February 2015 based on 7 aircraft flights.
- 4 bottom-up inventories suggest fossil **2.2±0.3** TgC/mo. (Ahn et al., in prep 2019).
- Model inversion total CO₂ = 2.5±0.7 TgC (Lopez-Coto et al. submitted 2019).

Long Island Sound Ozone Study – LISTOS NYSERDA and NESCAUM

Correlation among CO, CO₂ and CH₄ over NYC

Afternoon Flight on May 18, 2017

Observed CO and CO₂, CH₄ and CO₂ as well as CH₄ and CO are well correlated.

CO and CO₂ emissions look good, but CH_4 emissions may be underestimated by a factor of 2-3.

Air Chemistry Research in Asia (ARIAs)

- Peking University, Beijing Normal University, Hebei Provincial weather service, and University of Maryland
- NSF funded
- May-June 2016 in Hebei Province
- 11 research flights, ~3 hours each
- Purpose: Lagrangian study of trace gases and aerosols; complement to NASA KORUS-AQ

	Background ^{a,b}	ARIAs								
	pptv	Mean (Median), pptv	σ/\overline{x} %	800		Т	ARIAS Mauna Loa Obs CONTRAST Backgrou			
CFC-11	231	370 (280)	109	$\overline{>}^{600}$			T		+ Ave	rage
CFC-12	512	580 (560)	19	io (ppt		8				
HCFC-22	245	420 (370)	18	- 000 Bat 00 - 000	Ŧ		Ļ			
CCI ₄	82	89 (89)	23	× 200 -	*		¥			
CFC-113	73	80 (80)	4	100 -				Ŧ		<u>+</u>
CFC-114	16	40 (20)	239	0	CFC-11	CFC-12	HCFC-22	CCI ₄	CFC-113	CFC-114

^a Mauna Loa May 2016 Mean

^b CONTRAST, 25th percentile below 1500 m (Jan-Feb. 2014)

Summary

- Elevated and highly variable CFC-11 values during ARIAs.
- Origins in Shandong and Inner Mongolia
- Strong correlations CFC-11, CFC-12, and CCI₄.
- Suggestive of new CFC production and foam blowing applications.
- Chinese emissions had an influence on downwind regions such as Korea.

