Evaluation of Novel NASA Aerosol Fire Products Over Extreme Fire Events in the Semi-Arid Western U.S.

<u>S. Marcela Loría-Salazar^{1,2}</u>, Jaehwa Lee³, Andrew M. Sayer³, Alexei Lyapustin³, N. Christina Hsu³, Neil Lareau², Jens Redemann¹, and Heather A. Holmes²

¹ School of Meteorology, University of Oklahoma ² University of Nevada, Reno ³ NASA GSFC

Composite image created from photographs by: Patrick Byrne, Carolyn Conner, Peggy Davis, Daniel Fogg, John Newman, Cyrus Reed, and Gayle Trautman

Composite image created from photographs by: Patrick Byrne, Carolyn Conner, Peggy Davis, Daniel Fogg, John Newman, Cyrus Reed, and Gayle Trautman

- Human health impacts of wildfire smoke exposure
- Visibility and radiative forcing impacts for climate
- Increasing drought conditions in western U.S. = more fires

Chips Fire 2012 Aqua 3 Aug 2012

Rim Fire 2013 Aqua 22 Aug 2013

King Fire 2014 Terra 17 Sep 2014

70km

Apocalyptical 2018 Terra 11 Aug 2018

Uncertainties in satellite-derived aerosol optical depth (AOD) from Deep-Blue and MAIAC

- Uniformly mixed aerosols of homogeneous composition
- All aerosols are contained within the boundary layer
- Complicated transport over irregular terrain
- Surface reflectance issues over heterogeneous surfaces and complex topography

Loría-Salazar et al., (2016)

Objective and Hypotheses

Objectives

- 1. Evaluate aerosol satellite retrievals during fires and non-fire periods using new NASA Deep-Blue Collection 6.1 and MAIAC algorithms
- 2. Evaluate Plume Injection Height products from NASA ASHE and MAIAC algorithms against ground-based LIDAR during the Yosemite Rim Fire (2013)
- 3. Create a Air Quality Fire Ratio (AQFR) using satellite-derived plume injection height (PIH) and planetary boundary layer depth (PBLH) from WRF

Hypotheses

- 1. Improvement on fire detection on the new Collection 6.1 Deep-Blue
- 2. Satellite-derived PIH is able to capture the plume top
- 3. The AQFR helps to diagnose surface-levels of aerosol pollution from smoke aloft

Measurements and retrievals

Aerosol Optical Depth (AOD)

- AERONET (Ground-based sun photometer)
- MODIS Deep Blue (DB) best (10 km x 10 km resolution)
- Multi-Angle Implementation of Atmospheric Correction (MAIAC) (1 km x 1 km resolution)

Plume injection height from MODIS

- Aerosol Single Scattering Albedo and Height Estimation (ASHE)
- MAIAC

LIDAR

Ground-based measurements

Weather Forecast Research (WRF) numerical model

• 12 km x 12 km horizontal resolution

Improvement DB and MAIAC AODs

Fire season, August, 2013

Study case:

- August, 2013
- Multiple fires (e.g. Yosemite Rim Fire)

MODIS DB C6.1 (?) (Pi: Christina Hsu, PhD)

- Improvement in fire detection
- Reduction in the impact of surface reflectance in the AOD

MAIAC (?) (Pi: Alexei Lyapustin, PhD)

- High-resolution AOD (1-km)
- Plume injection height
- Better characterization of surface reflectance in the AOD

Improvement C6.1 and MAIAC AODs

Western U.S., August, 2013

Longitude

Improvement in AOD: DB

Western U.S., August, 2013

Results:

- C6 (r²~0.62; p <0.01)
- C6.1 (r²~0.75; p <0.01)
- Fire detection (?)
- Albedo (?)

Improvement

Improvement in AOD: DB

Western U.S., August, 2013

August 2013 (Monthly averages) 0.7 0.6 0.5 0.3 0.2 0.1 Col. 6.1 MODIS Terra/Aqua DB best AOD (550 nm) August 2013 (Monthly STD) 0.7 0.6 0.5 0.4 0.3 0.2 0.1

-110

-105

Results (Fires):

High STDs in AOD help to • detect fire activity

Results (Albedo):

Low STDs in AOD help to detect areas of albedo issues

Improvement in AOD: MAIAC

Western U.S., August, 2013

Results:

- MAIAC (r²=0.85, p <0.01)
- <u>Limitations</u> to retrieve AOD over fire periods (underestimation).
- Low STDs in AOD help to detect areas of albedo issues

Plume Injection Height

PIH Definition

Effect of wildfire-induced thermal bubble on radio/ communication - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/Vegetation-fire-plume-in-aslight-wind_fig1_242080522 [accessed 14 Nov, 2018] Overview Yosemite Rim fire August 2013

https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stel prd3845868.pdf

Yosemite Rim fire August 2013

Terra MODIS visible figure

Plume Injection Height

Air Quality Fire Ratio

Western US, August, 2013

 $AQFR = \frac{PIH}{PBLH}$

Air Quality Fire Ratio

Western US, August, 2013

 $AQFR = \frac{PIH}{PBLH}$

AQFR < 1

 $AQFR \ge 1$ Aerosol is confined within the planetary boundary layer

Aerosol is transported aloft the

planetary boundary layer

(?)

NASA

Air Quality Fire Ratio

Western US, August, 2013

 $AQFR = \frac{PIH}{PBLH}$

AQFR < 1

 $AQFR \ge 1$ Aerosol is confined within the planetary boundary layer

(?)

Percentage of confinement: Percentage of days when the plumes were transported within the PBLH

planetary boundary layer

Aerosol is transported aloft the

Q

-125

-120

-115

Longitude

-110

-105

Air Quality Fire Ratio: AM Overpass

Western US, August, 2013

Q

Air Quality Fire Ratio: PM Overpass

Western US, August, 2013

Loria-Salazar et al., (submitted, JGR)

-115

Longitude

-125

-120

-110

-105

Summary

Summary

- Fire detection improvement in DB from C6 to C6.1
- MAIAC shows limitations during fire periods
- MAIAC is able to estimate PIH within 400 m and ASHE within 200 m
- The first order approximation AQFR is able to diagnose surface levels of aerosol pollution downwind from plumes aloft

Future work

- 1. Implementation of GOES fire products
- 2. Evaluate satellite-derived PIH during heterogeneous aerosol vertical profiles
- 3. Create new approximations of AQFR to improve fire plumes forecasting using satellite retrievals

Acknowledgments

Financial Support

- NASA Earth and Science Student Fellowship (NNX16AN94H, PI: H. A. Holmes)
- Nevada Space Grant Consortium Research Infrastructure (PI: H. A. Holmes)

Yellowstone/UCAR

 We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation

UNR ATAQ Laboratory

• Heather A. Holmes, PhD (PI)

UNR Patrick Arnott's Research Group

• W. Patrick Arnott, PhD (PI)

Evaluation of NASA MODIS AOD

Western U.S., August, 2013

Loria-Salazar et al., (In-preparation)

Plume Injection Height

MODIS aerosol retrievals

NASA

Land algorithms discussion (surface characterization)

Deep-Blue (DB)

- 1. Pixel-based processing
- 2. Filters for clouds, sediments, snow, coast lines, <u>fires</u>, etc.
- 3. Short wavelengths (0.412, 0.47, 0.65 μm)
- 4. Surface reflectance characterization:
- (i) Normalized difference vegetation index
- (ii) Data base by geolocation

Hsu et al., (2013)

Land algorithms discussion (surface characterization)

Deep-Blue (DB)

- 1. Pixel-based processing
- 2. Filters for clouds, sediments, snow, coast lines, <u>fires</u>, etc.
- 3. Short wavelengths (0.412, 0.47, 0.65 µm)
- 4. Surface reflectance characterization:
- (i) Normalized difference vegetation index
- (ii) Data base by geolocation

Multiangle Implementation of Atmospheric Correction (MAIAC)

- 1. Image-based processing
- 2. Filters for clouds, sediments, snow, coast lines, <u>fires</u>, etc.
- Short wavelength (0.47 μm) and infrared (2.1 μm)
- 4. Surface reflectance characterization:

Time series analysis of

- (i) Surface bidirectional reflectance (BRF)
- (ii) Spectral regression coefficient

Hsu et al., (2013)

Lyapustin et al., (2011)

MODIS aerosol retrievals

Land algorithms discussion (surface characterization)

Deep-Blue (DB) 1. Pixel-based processing	Multiangle Implementation of Atmospheric Correction (MAIAC) 1. Image-based processing
 Filters lines, <u>1</u> Short Fine print: challenges ret Surfac Norm 	rieving on salted pans areas hd infrared estern U.S.)
(ii) Data base by geolocation Hsu et al., (2013)	Time series analysis of (i) Surface bidirectional reflectance (BRF) (ii) Spectral regression coefficient Lyapustin et al., (2011)

HYSPLIT Back Trajectories: 31 Aug 2013

24 hour, NAM 12-km

Reno: 100m & 2000m near plume

Fresno:

4000m & 5000m near plume

100m & 500m west of plume, clean air

HYSPLIT Back Trajectories: 31 Aug 2013

24 hour, NAM 12-km

V G

Reno: 100m & 2000m near plume

Exagence Decougeder Managener Resigner Register Resigner

Fresno:

4000m & 5000m near plume

100m & 500m west of plume, clean air

Loría-Salazar et al., In-preparation