

High Affinity Methanotrophs Are an Important Overlooked Methane Sink in the Arctic and Global Methane Budgets

<u>Youmi Oh</u>, Qianlai Zhuang, Licheng Liu, Lisa R. Welp Maggie C.Y. Lau, Tulli C. Onstott, David Medvigy, Gustaf Hugelius, Ludovica D'imperio, Bo Elberling, Stefan Schwietzke, Xin Lan, Sourish Basu, Lori Bruhwiler, and Edward Dlugokencky

NOAA ESRL Global Monitoring Annual Conference 2019

Uncertainties in natural arctic methane budget

Net Methane Emissions Simulated by CLM 4.5

Tarnocai et al. 2009; McGuire et al., 2012; Hinzman et al., 2013; Bruhwiler et al., 2014; Lau et al., 2015; Tan et al., 2015; Saunois et al. 2016

Biogeographic differences in methanotrophs

Le Mer and Roger, 2001; Christiansen et al., 2015

I added microbial and permafrost dynamics into TEM

a. Wetland b. Upland CH₄ CH₄ $[CH_4]_{air}$ $[CH_4]_{air}$ ε ε m_F m_E MG HAM LAM Methanogen t=1,2,3... t=1,2,3... CH₄ LAM ε Low affinity methanotroph m_E ε MG SOC HAM t=1,2,3... High affinity methanotroph Permafrost ε: Growth efficiency SOC m_F: Maintenance energy

Method

Zhuang et al., 2004; Zhuang et al., 2006; Zhuang et al., 2013; Oh et al., 2016

Three model setups for factorial analysis

 Simulation was conducted at a spatial resolution of 0.5°×0.5° from north of 50°N for contemporary period (2000-2016) and future projection (2016-2100)

Model Setup	XPTEM-XHAM	PTEM-HAM	TEM
Permafrost Dynamics	ON	ON	OFF
High Affinity Methanotrophs	ON	ON	OFF
Microbial Dynamics	ON	OFF	OFF

New models show lower CH₄ emissions in 2000-2016

6

Bruhwiler et al., 2014;Lau et al., 2015; Tan et al., 2015; Saunois et al. 2016

New models project smaller future CH₄ emissions

Schaefer et al., 2011; Koven et al., 2011; Schuur et al., 2013; Lawrence et al., 2015

HAM shows a better adaption strategy in the future

8

Von Stockar and Liu, 1999; Wieder et al., 2013; Trimmer et al., 2015

Oh et al., 2016

Models overestimated global natural methane emissions

 The current estimation of global methane soil sink is 30 TgCH₄yr⁻¹, but with a huge uncertainty (7 to >100 TgCH₄yr⁻¹)

Smith et al., 2000; Curry et al., 2007; Dutaur and Verchot, 2007; Saunois et al. 2016

The Global methane soil sink can be up to 3 times larger

Criteria 1 (Tg _{CH4} yr ⁻¹)	HAM only
- max. SOC threshold	90
Criteria 2 (Tg _{CH4} yr ⁻¹)	HAM only
– max. pH threshold	90

Inversion simulation using CarbonTracker-CH₄

NOAA in-situ data Observational CECMWF Constraints CarbonTracker-In-situ and AIRS Satellite data CH₄ TM5 GOSAT Simulation Current Evaluation **NOAA** Aircraft **HIPPO** Airborne **XPTEM-XHAM** BARCA measurement CARIBIC ARCTAS CARVE

12

Take Home Message

- We simulated less current and future net methane emissions in the Arctic by considering microbial dynamics of HAM and MG and permafrost dynamics
- The preliminary results show that the global methane soil sink can be up to 3 times larger than the current estimation
- Limitation and future research
 - Validation of the model and hypothesis using atmospheric inversions
 - Validation of the model for sites with a broader range of pH, SOC, and vegetation types using both high and low affinity methanotrophs using meta-data

Acknowledgement NASA Earth and Space Science Fellowship

14