Iodine Detection in the Lower Stratosphere

Prof. Rainer Volkamer

Theodore K. Koenig, Alfonso Saiz-Lopez, Pedro Campuzano-Jost, Benjamin A. Nault, Jose L. Jimenez

Br atoms in the stratosphere have ~60 times the O_3 destruction impact of Cl I atoms less certain but estimated at ~600 times the impact of Cl

Atmospheric Chemistry of Iodine

Source Organic VSL_I Inorganic I_y Total source: Emitted species CH₃I (6.8%), CH₂I₂ (2.8%), CH₂IX(6%) HOI (76%), I₂ (8.4%) Inorganic I_v (~85%), VSL₁ (~15%) Global flux 0.6 Tg I yr⁻¹ 3.23 Tg I yr⁻¹ 3.83 Tg I yr⁻¹

Lifetime mins - days seconds - mins

Release atomic I

 $I_{y,gas} = I_{10}OIO, HOI, I_2, HI, INO_x, I_xO_y I_{y,gas}$

 $I_{y,part} = I^{-}, IO_{3}^{-}$

Sherwen et al. 2016; 2017

WMO perspective on iodine in the LS

- Iodine Oxide (IO): <0.1ppt, twilight conditions (Butz et al. 2009; Boesch et al 2003; Pundt et. al 1998; Wennberg et al 1997)
- Methyl iodide (CH₃I): <0.05 ppt (Tegtmeier et al 2013; Saiz Lopez et al 2015)
- Particle lodine has qualitatively been detected in LS aerosols, but not yet been quantified (Murphy and Thomson, 2000; Murphy et. al 2006, 2014)

WMO 2018: Revised I_v estimate

Halogen	X _y (pptv)	O₃ eff. (a.u.)	X _y * O ₃ eff. (a.u.)			
Chlorine	115	1	115			
Bromine	5	60	300			
Iodine _{WMO2014}	<0.15	600	<90			
Iodine _{WMO2018}	0 - 0.8	600	0 - 540			
Volkamer et al., 2015; Saiz-Lopez et al. 2015						

World Meteorological Organization Stabul Occurs Research and Wanitoling Project—Report No. 55

SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 2018

Vanish Mohamulaginal Organization United Mattern Destaurined Programme Rational Costanic and Interception Administration National Arrangeding and Space Risker Statistics Europeint Contentions

First IO detection in daytime TTL (Volkamer et al 2015)

Volkamer et al., 2015 AMT Wang et al., 2015 PNAS Saiz-Lopez et al., 2015 GRL Sherwen et al., 2016 ACP Schmidt et al., 2016 JGR Dix et al., 2016 AMT Koenig et al., 2017 ACP Wales et al., 2018 JGR Badia et al., 2019 ACP Zhu et al., 2019 ACP

converter

NI DAQ

card

controllers

MMQ (INS/GPS) +

inclinometer

First IO detection in daytime TTL (Volkamer et al 2015)

0.13-0.15 pptv IO in the Tropical Transition Layer (both hemispheres)

"Our understanding of the chemical processes involving halogens and organic carbon species in the tropics seems incomplete."

Volkamer et al. 2015 AMT

Stratospheric I_v injection inferred from TTL-IO

Daytime TTL-IO suggests 0.25 to 0.70 pptv I_v are injected into the LS

Previous measurements had found <0.1 pptv IO at twilight in the LS (Butz et al. 2009; Wennberg et al 1997).

There is no previous daytime detection of IO in the LS.

CONTRAST RF15: Bromine injection to the stratosphere We have re-visited this case study to measure iodine oxide radicals

CONTRAST RF15: Jet crossing into NH mid latitude LS

0.055 pptv IO in the daytime LS is compatible with previous upper limits (twilight)

Iodine in the UTLS – a global perspective

First IO detection in daytime LS. First quantitative I_{y,part} detection in the UTLS.

Heterogeneous O_3 loss due to the $I^- + O_3$ reaction

Altitude (km)	I _{y,gas} (ppt)	I _{y,part} (ppt)	I ⁻ /I _{y,part} (%)	[l ⁻] (mmol/kg)	γ
11.7	0.64	0.13	50	14.7	9.2e-6
13.7	0.25	0.52	30	10.7	5.7e-6
15.5	0.09	0.68	12	9.19	4.9e-6

Model comparison and LS O₃ loss

I_v vertical distribution

 $LS O_3 loss: I_v >= Br_v \& Cl_v$

Measurements support I_y injection >0.6 pptv; rapid conversion to I_{y,part} (Compare WMO 2018: 0 – 0.8 pptv I_y), but I_{y,gas} remains detectable O₃ loss: I_{y,part} is competitive with I_{y,gas}. I_y is comparable to Br_y, Cl_y

Conclusions

- TORERO: First IO detection in the daytime TTL (Volkamer et al., 2015) suggested 0.25 to 0.70 pptv I_y are injected into the LS (Saiz Lopez et. al 2015). Revised WMO2018 estimate of 0 to 0.8 pptv I_y injection to LS inferred from TTL.
- CONTRAST: First IO detection in the daytime LS. The values are low (0.06 pptv IO) and compatible with previous IO upper limits measured at twilight.
- ATom-1 & ATom-2: First quantification of aerosol iodine in the LS. The fraction I⁻ /I_{y,part} decreases in the LS, but is non-zero, suggesting heterogeneous re-cycling.
- Our measurements support 0.76 ± 0.15 pptv I_v are injected into the LS

Halogen	X _y (pptv)	O ₃ eff. (a.u.)	X _y * O ₃ eff. (a.u.)	O ₃ loss (%)
Chlorine	115	1	115	16%
Bromine	5	60	300	43%
Iodine	0 - 0.8	~600	0 - 540	
Total I _v	0.76	375	285	41%
- Gas	0.11	960	105	
- Particle	0.65	280	180	

Acknowledgements: NSF AGS 1620530, 1261740, 1104104 NASA doi: 10.3334/ORNLDAAC/1581 TORERO, CONTRAST, Atom-1, Atom-2 science teams

LS-O₃ loss: Br ~ I >> Cl

Gas-phase more efficient than particulate iodine at destroying O_3

Heterogeneous O₃ loss dominates over gas-phase, and is responsible for >60% of iodine O₃ loss in LS.

