Patterns and Controls on Trace Gas Fluxes of CO₂ and/or CH₄ in Marine and Terrestrial Habitats from Barrow, Alaska to Pago Pago, American Samoa

Walter Oechel

Director, Global Change Research Group Co-Director SDSU Center for Climate and Sustainability Studies (C2S2) San Diego State University

May 21, 2019

Educational Partnership Program with Minority-Serving Institutions

- The EPP/MSI is a Federal STEM education and NOAA mission future workforce program with focus on:
 - supporting the training and graduation of students and increasing participation of students from traditionally underrepresented minority communities;
 - developing eligible candidates in support of a diverse future workforce for NOAA and NOAA mission-related enterprises; and,
 - post-secondary education and research capacity development in atmospheric, oceanic, and environmental sciences and remote sensing technology at MSIs supported through competitive awards.
- SDSU research and graduate education of URM students

CENTER FOR EARTH SYSTEM SCIENCES AND REMOTE SENSING TECHNOLOGIES

National Oceanic and Atmospheric Administration U.S. Department of Commerce

Barrow/Utqiagvik

Sky Oaks (3) SMER Scripps Pier (M) San Diego Bay (M)

La Paz

• American Samoa (M)

Image Landsat / Copernicus U2018.Coogle US Dept of State Geographer Data SIO, NOAA, U.S. Navy, NGA, CEBCO Main Research Areas for NOAA CREST EPP Students at SDSU

Google Earth

Measuring CO₂ fluxes along the coastal bays of American Samoa

Michael Trunkhill MS Student Candace Alagata MS Student

Headspace equilibrator

Boat Based Eddy Covariance

CO₂ flux of San Diego Bay Alexander Carsh, Ph.D. Student Candace Alagata, MS Student

Initial Results – December 2018 survey

Key points:

- Clear spatial variation between the north section of San Diego Bay, the central-to-south section, and the bay mouth
 - May be due to difference seagrass density, relative levels of human activity, tidal flushing effects, etc.
- All points measured along the bay were sources of carbon to the air
 - Potentially due to winter season inhibiting photosynthetic activity

Controls on CO₂ Flues in the Mangroves of Bahia Magdalena

Josediego Uribe-Horta, MS Student

Mangroves: Under estimated for C storage; Water stress as high as desert vegetation Effects of drought conditions and fire on CO₂ flux in semi-arid chaparral ecosystems

> Andrea N. Fenner Ph.D. Student

Breahna Gillespi Ph.D. Student

Jessica Montes MS Student

Slide 9

Carbon sequestration with stand age and fire cycle Effect of Drought on Carbon Sequestration

"Soil Respiration Response to Adenostoma sparsifolium Microhabitats Among Seasons in Semiarid Shrubland"

By Jessica Montes, MS Student

Effects of Elevated CO₂ and Climate Change on Wines and Vines Molly Clemens, Ph.D. Student Alessandra Zuinga, Ph.D. Student

Experimental Vineyard at SDSU Field Station Temecula Molly Clemens, Ph.D. student 9 varietals

National Oceanic and Atmospheric Administration U.S. Department of Commerce

Experimental Vineyard in the Country of Georgia

Adaptation of Wine **Production to Climate** Change E.g. joint research on solutions to the impacts of global warming, increasing CO₂, and changes in water availability on wines and vines in California and Georgia

> In Georgia: 437 Local Varietals 350 International Varietals

Arctic CO₂ and CH₄ Fluxes

Kyle Ardnt Ph.D. Student

Josh Hashemi Ph.D. Student

Importance of the Zero Curtain for Fall Trace Gas Fluxes

10

-10

Methanol Oxidation at Zero and Subzero Temperatures

Eric Wilkman Ph.D. Student

Major Goals and Conclusions

- Patterns and controls on CO₂ (and CH₄) fluxes in the Arctic, Chaparral, Mangrove, Desert, South Pacific, and Marine Ecosystems.
 - Zero curtain period very important for CO₂ and CH₄ production in Arctic
 - Old chaparral can be managed as a sink for C.
 - Coastal Marine can be managed as an increased Sink for C.
 - Seagrass revegetation
 - Watershed management, coral health
 - Mangroves a major sink of C.
 - Mangrove water stress as high as desert vegetation

Thanks NOAA NERTO Mentors and Collaborators

• ESRL GMD

- Russ Schnell-Boulder
- Pieter Tans-Boulder
- Bryan Thomas-Barrow
- Ben Kaiser-American Samoa (Departed)
- Alex Tardy-NWS San Diego
- Marieke Sudek-NOAA NMSAM
- Lauren Jarlenski-NOAA NMSAM
- And many others.....!!!!

