Towards Understanding Biospheric Gross Carbon Fluxes: sources and sinks of Carbonyl Sulfide

Huilin Chen ${ }^{1}$, Linda Kooijmans ${ }^{1,2}$, Alessandro Zanchetta ${ }^{1}$, Steven van Heuven ${ }^{1}$, Maarten Krol 2, Wu Sun ${ }^{3}$, Ulli Seibt ${ }^{3}$, Juho Aalto ${ }^{4}$, Kukka-Maaria Erkkilä ${ }^{4}$, Timo Vesala ${ }^{4}$, Ivan Mammarella ${ }^{4,}$ Kadmiel Maseyk ${ }^{5}$

1. University of Groningen, Groningen, The Netherlands;

2. Wageningen University, Wageningen, The Netherlands;
3. University of California Los Angeles, CA, USA;
4. University of Helsinki, Helsinki, Finland;
5. The Open University, Milton Keynes, UK.

Carbonyl Sulfide (OCS or COS) as a tracer for GPP

Campbell et al., 2008

- North America summer drawdown of atmospheric COS related with GPP
- COS Plant uptake $F=G P P \cdot \frac{[C O S]}{\left[\mathrm{CO}_{2}\right]} \cdot V_{C O S / \mathrm{CO}_{2}}$
- $\mathrm{Vcos} / \mathrm{co}_{2}$: Leaf-scale relative uptake

Whelan et al., 2018

- Bottom-up global budget of COS
- Non-wetland ecosystems mainly plant uptake
- Also significant anthropogenic sources

COS measurement campaigns -2015, 2016, 2017 Hyytiälä -2014, 2018, 2019 Lutjewad

Hyytiälä:

- COS 1 Hz from Groningen: profile + chambers (Kooijmans et al., 2016)
- COS 10 Hz from Helsinki: eddy covariance (Kohonen et al., 2019)
- Groningen COS overall uncertainty (1-s): $7.1 \mathrm{ppt} \operatorname{COS}, 0.22 \mathrm{ppm} \mathrm{CO}_{2}$, (calibration, water vapor corrections etc.)

Hyytiälä Measurement campaigns

COS and CO_{2} measurements:

- Eddy-covariance (23 m)
- Profile: 0.5, 4, 14, 23, 125 m
- Soil chamber fluxes
- Branch chamber fluxes
- Meteorological variables: radiation. and humidity, Radon

Branch chamber

Soil chamber

Hyytiälä ecosystem fluxes COS and $\mathrm{CO}_{2}-2015$

Time series of ecosystem CO_{2}, COS fluxes in 2015 Diurnal cycles of CO_{2}, COS fluxes Jul\&Aug Nighttime COS fluxes Nighttime COS uptake (Jul - Nov) contributes to 21 \% of the total daily uptake Kooijmans et al., 2017 Soil/total ecosystem COS flux: Nighttime (Jul - Nov): 34-40 \%; Daytime (Jul): 13 \%

Hyytiälä GPP estimates based on leaf chamber measurements COS and $\mathrm{CO}_{2}-2017$

Time series of hourly fluxes and meteo.

GPP estimates based on COS and standard methods

Kooijmans et al., 2019

Hyytiälä responses of $\mathrm{F}_{\mathrm{CO}}, \mathrm{F}_{\mathrm{CO}}$ and LRU to light and of $\mathrm{F}_{\text {cos }}$ to $\mathrm{g}_{\mathrm{s}, \mathrm{cos}}$

Seasonal variation of light-saturated LRU

Hyytiälä seasonal variation of light-saturated LRU

Frequency distribution (bars) and a lognormal fit (solid line) to published values ($n=53$) of the leaf relative uptake rate of C 3 species.

Whelan et al., 2018

Lutjewad elevated COS measurements

Mobile van COS measurements Groningen province

- Lutjewad
- Ploughing
- Delfzijl
- Industrial area
- Suike Unie
- Sugar factory

Delfzijl Industrial observed COS enhancements

- High correlation with CO , with a ratio of $9.6 \mathrm{ppt}(\mathrm{COS}) / \mathrm{ppb}(\mathrm{CO})$

Sources: Combined heat and power plant; metal smelting; Alloys production, waste and soil treatment; Bio-methanol production

SuikerUnie Sugar factory - COS emissions

- COS enhancements observed, significant CH_{4} enhancements, but not collocated

Summary of preliminarily estimated emissions of various sources

Source	COS enhancements	Distance from source	Estimated COS emissions
SuikerUnie	$0.71-1.27 \mathrm{ppb}$	$\sim 300 \mathrm{~m}$	$2.35-4.21 \mathrm{~kg}(\mathrm{~S}) / \mathrm{y}$
ChemiePark	$1.32-6.97 \mathrm{ppb}$	$\sim 400 \mathrm{~m}$	$3.84-31.8 \mathrm{~kg}(\mathrm{~S}) / \mathrm{y}$
Silicon carbide (SiC) facility	$0.42-0.69 \mathrm{ppb}$	$\sim 600 \mathrm{~m}$	$3.39-5.52 \mathrm{~kg}(\mathrm{~S}) / \mathrm{y}$
Ploughing agricultural land	$\sim 0 \mathrm{ppb}$	$\sim 100 \mathrm{~m}$	$\sim 0 \mathrm{~kg}(\mathrm{~S}) / \mathrm{y}$

Conclusions

Hyytiälä boreal forest
Significant COS uptake during night

- 21% of daily total fluxes
- Soil /total ecosystem COS flux: Nighttime: 34-40 \%; Daytime: 13 \%

Leaf chamber measurements

- COS uptake mainly controlled by $g_{s_{-}}$cos , and also limited by $g_{i_{-} \cos }$ under high light
- LRU varies with light and VPD in the peak growing season

Lutjewad amospheric site

- COS spikes observed occasionally at the Lutjewad station
- Anthropogenic emissions observed from chemical facilities and sugar factory
- No ploughing COS emissions detected

