

 faculty of science and engineering centre for isotope research

Towards Understanding Biospheric Gross Carbon Fluxes: sources and sinks of Carbonyl Sulfide

Huilin Chen¹, Linda Kooijmans^{1,2}, Alessandro Zanchetta¹, Steven van Heuven¹, Maarten Krol², Wu Sun³, Ulli Seibt³, Juho Aalto⁴, Kukka-Maaria Erkkilä⁴, Timo Vesala⁴, Ivan Mammarella⁴, Kadmiel Maseyk⁵

- 1. University of Groningen, Groningen, The Netherlands;
- 2. Wageningen University, Wageningen, The Netherlands;
- 3. University of California Los Angeles, CA, USA;
- 4. University of Helsinki, Helsinki, Finland;
- 5. The Open University, Milton Keynes, UK.

Established by the European Commission

Carbonyl Sulfide (OCS or COS) as a tracer for GPP

Campbell et al., 2008

- North America summer drawdown of atmospheric COS related with GPP
- COS Plant uptake $F = GPP \cdot \frac{[COS]}{[CO_2]} \cdot V_{COS/CO_2}$
- Vcos/co₂: Leaf-scale relative uptake

Whelan et al., 2018

- Bottom-up global budget of COS
- Non-wetland ecosystems mainly plant uptake
- Also significant anthropogenic sources

COS measurement campaigns

-2015, 2016, 2017 Hyytiälä -2014, 2018, 2019 Lutjewad

10 Hz: Eddycov. 1 Hz: Profile + chambers

Hyytiälä:

- COS 1 Hz from Groningen: profile + chambers (Kooijmans et al., 2016)
- COS 10 Hz from Helsinki: eddy covariance (Kohonen et al., 2019)
- Groningen COS overall uncertainty (1-s): 7.1 ppt COS, 0.22 ppm CO₂, (calibration, water vapor corrections etc.)

Hyytiälä Measurement campaigns

COS and CO₂ measurements:

- Eddy-covariance (23 m)
- **Profile**: 0.5, 4, 14, 23, 125 m
- Soil chamber fluxes
- Branch chamber fluxes
- Meteorological variables: radiation. and humidity, Radon

Branch chamber

Soil chamber

125 m

Hyytiälä ecosystem fluxes COS and CO_2 - 2015

Time series of ecosystem CO₂, COS fluxes in 2015 Diurnal cycles of CO₂, COS fluxes Jul&Aug Nighttime COS fluxes Nighttime COS uptake (Jul - Nov) contributes to 21 % of the total daily uptake *Kooijmans et al., 2017* Soil/total ecosystem COS flux: Nighttime (Jul - Nov): 34-40 %; Daytime (Jul): 13 % 5

Hyytiälä GPP estimates based on leaf chamber measurements COS and CO_2 - 2017

Time series of hourly fluxes and meteo.

Average diurnal cycles 18 May – 13 July 2017

Hyytiälä responses of F_{COS} , F_{CO2} and LRU to light and of F_{COS} to $g_{s,COS}$

Seasonal variation of light-saturated LRU

Lutjewad elevated COS measurements

h

Mobile van COS measurements Groningen province

- Lutjewad
 - Ploughing
- Delfzijl
 - Industrial area
- Suike Unie
 - Sugar factory

Delfzijl Industrial observed COS enhancements

High correlation with CO, with a ratio of 9.6 ppt(COS)/ppb(CO)
Sources: Combined heat and power plant; metal smelting; Alloys production, waste and soil treatment; Bio-methanol production

SuikerUnie Sugar factory - COS emissions

COS enhancements observed, significant CH₄ enhancements, but not collocated

Summary of preliminarily estimated emissions of various sources

Source	COS enhancements	Distance from source	Estimated COS emissions
SuikerUnie	0.71 - 1.27 ppb	~ 300 m	2.35 - 4.21 kg(S)/y
ChemiePark	1.32 - 6.97 ppb	~ 400 m	3.84 - 31.8 kg(S)/y
Silicon carbide (SiC) facility	0.42 - 0.69 ppb	~ 600 m	3.39 - 5.52 kg(S)/y
Ploughing agricultural land	~0 ppb	~ 100 m	~ 0 kg(S)/y

Conclusions

Hyytiälä boreal forest

- Significant COS uptake during night
- 21% of daily total fluxes
- Soil /total ecosystem COS flux: Nighttime: 34-40 %; Daytime: 13 %

Leaf chamber measurements

- COS uptake mainly controlled by $g_{s_{cos}}$, and also limited by $g_{i_{cos}}$ under high light
- LRU varies with light and VPD in the peak growing season

Lutjewad amospheric site

- COS spikes observed occasionally at the Lutjewad station
- Anthropogenic emissions observed from chemical facilities and sugar factory
- No ploughing COS emissions detected