Investigating stratospheric changes between 2009 and 2018 with trace gas data from aircraft, AirCores, a global model and a focus on CFC-11

eGMAC 2020

J. C. Laube^{1,2}*, E. C. Leedham Elvidge² K. E. Adcock², B. Baier^{3,4}, C. A.M. Brenninkmeijer⁵, H. Chen⁶, E. S. Droste², J.-U. Grooβ¹, P. Heikkinen⁷, A. J. Hind², R. Kivi⁷, A. Lojko^{2,8}, 5 S. A. Montzka⁴, D. E. Oram², S. Randall⁹, T. Röckmann¹⁰, W. T. Sturges², C. Sweeney⁴, M. Thomas², E. Tuffnell², and F. Ploeger^{1,11}

¹Jülich Research Centre, Germany; ²University of East Anglia, UK; ³University of Colorado-Boulder, USA; ⁴NOAA-GMD, USA; ⁵Max Planck Institute for Chemistry, Germany; ⁶University of Groningen, Netherlands; ⁷Finnish Meteorological Institute, Finland; ⁸University of Michigan, USA; ⁹Random Engineering Ltd., UK; ¹⁰Utrecht University, Netherlands; ¹¹University of Wuppertal, Germany

What we have done

- AirCores were invented by NOAA* and allow the collection of air samples from altitudes of up to >35 km using weather balloons, which is very cost-effective
- We present data from 15 AirCore flights since 2016 and expand the set of measurable trace gases to include the important ozone-depleting substances CFC-11, CFC-12, HCFC-22, H-1211, H-1301 as well as SF₆

• Due to its recent unusual tropospheric trend** we focus on CFC-11 and use runs of the CLaMS global stratospheric model driven with three reanalyses to

a) compare with the observational record and

b) derive CFC-11 strat-trop mass fluxes over a 10-year period

*Karion et al., 2010 ** Montzka et al., 2018, Rigby et al., 2019

Message 1: Quality assurance

• AirCore data agrees well with NOAA background data from ground-based stations

• Average precisions are slightly worse (e.g., 0.9 vs. 0.4 % for CFC-11) due to the amount of air retrieved by more than an order of magnitude smaller

Message 1: Quality assurance

AirCore data agrees well with NOAA background data from ground-based stations

SF₆ data demonstrates the increased temporal and spatial density of stratospheric observations - and can be used, alongside other gases like C₂F₆ and HFC-125, to derive average stratospheric residence times (Ages of Air, AoAs)

Forschungszentrum

 Correlations of mixing ratios and Ages-of-air from AirCore, aircraft and CLaMS model data driven by JRA-55 and ERA-Interim agree well, but not the model run driven by MERRA-2 (higher AoAs)

- When determining trends of CFC-11 mixing ratios at certain AoA levels they do not agree well (apart from ERA-I @ 3 yrs AoA) with the trends derived from model runs
- On average we find increases of 3 to 10 % between 2009 and 2018, whereas tropospheric CFC-11 decreased by 6 % during that period

→ This points towards stratospheric circulation changes that could transport increased amounts of CFC-11 back into the troposphere

• Mhmm, ok, but there's not a lot of observations and they're pretty scattered – so is this proposed stratospheric change actually likely?

 Mhmm, ok, but there's not a lot of observations and they're pretty scattered – so is this stratospheric change actually significant?

CFC-11/AoA	1 year	2 years	3 years	
Slope obs (ppt/year)	0.69	1.77	1.25	
Uncertainty (ppt/year)	1.54	1.81	1.60	2 sigma
Trend (%/decade)	3.2	10.4	10.2	troposphere: -6 %
CFC-12				
Slope obs (ppt/year)	-1.96	-0.45	-0.38	
Uncertainty (ppt/year)	1.90	2.20	2.52	
Trend (%/decade)	-3.6	-0.95	-0.93	troposphere: -6 %
HCFC-22				
Slope obs (ppt/year)	6.15	6.16	5.98	
Uncertainty (ppt/year)	0.15	0.14	0.14	
Trend (%/decade)	30.5	33.4	36.0	troposphere: +25 %
H-1211				
Slope obs (ppt/year)	-0.031	0.000	0.013	troposphere: -20 %
Uncertainty (ppt/year)	0.008	0.008	0.007	
Trend (%/decade)	-9.0	0.2	9.1	JULIUN Forschungszentrum

- Overall message: The mixing ratio trend between 2009 and 2018 at certain AoAs in the stratosphere is in the right direction to explain a part of the increased emission signal – but observations are sparse in both space and time
- Still, it demonstrates the potential use of AirCore-based data
- Remaining question: Can we use the CLaMS model data to look at changes of the CFC-11 stratosphere-troposphere mass flux between 2009 and 2018?

Message 4: CFC-11 strat-trop mass fluxes from 3 reanalyses

- Montzka et al., 2018: Stratospheric changes might explain up to 50 % of the tropospheric CFC-11 emission signal
- The CLaMS runs driven by the
 ERA-Interim, JRA-55, and
 MERRA-2 reanalyses give very
 different answers in terms of
 the amount of CFC-11
 transported back to the
 troposphere and could
 explain anything from -3 % to
 +270 % of the new
 tropospheric emission signal
 after 2012

Conclusions

- The AirCore technique can be used to measure halogenated trace gases in the stratosphere (down to mixing ratios of well below 1 ppt)
- Currently available global meteorological reanalyses are insufficient to constrain the stratospheric part of the CFC-11 budget
- Atmospheric observations are also still too sparse and infrequent to help with this quantification, but do offer qualitative clues
- For more details please see our paper in ACPD:

https://www.atmos-chem-phys-discuss.net/acp-2020-62/

