NOAA/GML STRATOSPHERIC SAMPLING USING AIRCORE: ROUTINE MEASUREMENTS, SATELLITE EVALUATION AND MODEL COMPARISONS

Bianca Baier^{1,2}, Colm Sweeney², Arlyn Andrews², Pieter Tans², Andy Jacobson^{1,2}, Jack Higgs², Tim Newberger^{1,2}, Sonja Wolter^{1,2}, Gregory Osterman³, Debra Wunch⁴, Huilin Chen⁵, Cyril Crevoisier⁶, Eric Fleming⁷, Tim Takahashi⁸, and Mark Zepeda⁹

¹CIRES, Univ. Colorado-Boulder, Boulder, CO, USA
²NOAA/GML, Boulder, CO, USA
³NASA/JPL, Pasadena, CA, USA
⁴University of Toronto, Toronto, Canada
⁵University of Groningen, Groningen, Netherlands
⁶Laboratoire de Météorologie Dynamique, Palaiseau Cedex, France
⁷NASA/GSFC, Greenbelt, MD, USA
⁸Arizona State University, Tucson, AZ, USA
⁹Delta Zee Solutions, LLC., Tucson, AZ, USA

Atmospheric Sampling System

NOAA/GML AirCore over the past decade(s)

-AirCore remote sensing evaluation of XCO2, XCH4 -RINGO international AirCore comparison effort

- Over a decade of NOAA/GML AirCore sampling with >100 CO₂, CH₄, CO profiles retrieved from select locations
- Routine, near-monthly balloon launches in Colorado: coordinated with A-train overpasses for OCO-2 evaluation
- Several small-scale field campaigns since 2018:
 - Remote sensing evaluation within Total Carbon Column Observing Network (TCCON) : OCO-2, ground-based FTS inter-comparisons
 - ICOS RINGO collaboration (Sodankylä, Traînou) AirCore inter-comparisons, towards a global AirCore network

Satellite trace gas retrieval evaluation using AirCore

• Satellite trace gas retrievals cannot be calibrated, which lessens compatibility with ground-based observing networks

- · Rely on resources like global TCCON, which is scaled to calibrated aircraft and AirCore GHGs traceable to WMO scales
- To-date, 11 AirCores launched coincidentally with OCO-2 overpasses in NE Colorado
- AirCores capture >98% of atmospheric column: less "extrapolation" involved, greater potential error reduction in retrievals by comparison to AirCore vs. aircraft

Stratospheric modeling efforts and comparison to AirCore

*Critical measurements made by NOAA/GML (OZWV, HATS) used to develop model stratospheric CH_4 , N_2O relationships

- Accurately modelling stratospheric CO₂,
 CH₄ is critical for improving apriori GHG profiles for ground-based FTS retrievals (e.g. TCCON)
- Also critical for investigating age of air, stratospheric dynamics

Age spectra from 2-D stratospheric model + CO₂ stratospheric boundary conditions (MLO, SMO)

= CO₂ time series corresponding to each Mean Age

Stratospheric modeling efforts and comparison to AirCore

CarbonTracker (CT2019) evaluation of stratospheric CO₂ using AirCores

- CarbonTracker is NOAA's CO₂ inverse modeling framework for mole fraction, flux estimation (Jacobson et al., 2020; http://www.carbontracker.noaa.gov)
- CT assimilates routine NOAA CCGG Aircraft Network flask CO₂ measurements to ~12-13 km MSL
- AirCore samples from 2009-2020 extend to ~30km MSL, provide some of the only routine GHG measurements in UT/LS for model evaluation

New development: measurement of N₂O in AirCores

- Nitrous oxide (N₂O) is potent GHG, long-lived: useful for investigating stratospheric circulation and change
- CO₂ + N₂O in routine AirCore samples informs stratospheric tracer-tracer relationships
- Demonstrated use of highprecision Picarro N₂O-CO + 4channel (CO2-CH4-CO-H2O) Picarro to measure species concurrently in AirCores
- First full N₂O profiles retrieved in AirCores

New development: High-altitude AirCore sampling platform

- Biggest limitation with balloon-borne AirCore sampling is feasibility of recovery
- Custom design: portable, lightweight, optimized for AirCore and scientific payload
- Revolutionize surface to stratosphere sampling, enhance weather forecasting capabilities, and further satellite retrieval and algorithm evaluation

Summary

- We have a growing time series of retrieved AirCore profiles since ~2010 in Colorado
- Routine, long-term monitoring of the AirCore is useful tool in evaluating modeled greenhouse gases in the stratosphere
- As satellite community continues to grow, multiple end users in ground-, satellite-based remote sensing communities (NOAA CrIS, TROPOMI, MOPITT, A-train constellation, etc.) benefiting from routine AirCore sampling
- Collaboration between AirCore groups globally is crucial for furthering AirCore technique and working towards establishing global "AirCore Network"
- The ability to measure new species in AirCore whole-air samples opens up new possibilities for GML stratospheric observing capabilities
- As does a recoverable platform for high-altitude sampling

Funding acknowledgements:

BACKUP SLIDES

- Over a decade of NOAA/GML AirCore sampling with >100 CO₂, CH₄, CO profiles retrieved from select locations
- Routine, near-monthly balloon launches in Colorado
 - Now coordinated with A-train overpasses in NE Colorado for OCO-2 evaluation
- Several small-scale field campaigns since 2018
 - Remote sensing evaluation at U.S. TCCON stations: OCO-2, ground-based FTS inter-comparisons
 - ICOS RINGO collaboration (Sodankylä, Traînou) AirCore inter-comparisons, towards a global AirCore network

Satellite trace gas retrieval evaluation

- Total Carbon Column Observing Network (TCCON) is primary resource for evaluating satellite trace gas retrievals
- NASA's Orbiting Carbon Observatory relies heavily on TCCON total-column CO₂
- BUT ground-, satellite-based total column GHG retrievals cannot be calibrated, lessening compatibility with groundbased observing networks tied to WMO trace gas scales, and utility for GHG flux estimation

TCCON FTS remote sensing evaluation

- AirCore is low-cost, low effort pathway to sample over 98% of atmospheric column
- Spaceborne greenhouse and trace gas retrievals cannot be calibrated, which lessens compatibility with long-term, calibrated ground-based network observations
- AirCore profiles are calibrated, tied to WMO scales, which provides a link between spaceborne observations and ground-based observing networks

<u>Platform</u>	Range	<u>Cost (\$)</u>	XCO ₂ error
Small aircraft	0-8 km	1.5K	0.77-2.14 ppm
Jet	0-12 km	10K	0-0.4 ppm
AirCore	0-30km	5K (long-term)	0.1 ppm

Age Spectra are from GSFC 2D Model (Eric Fleming) that was optimized to match in situ CO2 and SF6 balloon observations from 1990s/2000s:

GSFC-2D Extended Age Spectrum Library: Tropics

Vooro

Mean Age versus N2O and Mean Age versus CH4 relationships are surprisingly invariant throughout the lower/middle stratosphere:

CO2 Age, Years

Age, years

CarbonTracker evaluation of stratospheric CO₂ using AirCores

- CarbonTracker is NOAA's CO₂ modeling framework mole fraction, flux estimation
- CarbonTracker assimilates routine NOAA CCGG aircraft network flask CO₂ measurements to ~12 km MSL
- AirCore samples to ~30km MSL provide some of the only routine GHG measurements in UT/LS for model evaluation

New development: High-altitude AirCore sampling platform

- Biggest limitation with balloon-borne AirCores is feasibility of recovery
 - Trees, accessibility, water all barriers to [quick] recovery and lab analysis
- Custom design: portable, lightweight, optimizes glide ratio for controlled descent rate (~10 ms⁻¹) for more efficient AirCore stratospheric sample collection, reduction in meteorological sensor hysteresis

New development: High-altitude AirCore sampling platform

- Balloon ascent, autopiloted descent
- Large payload capacity for housing multiple sensors (i.e. FPH, POPS)
- Can return e.g. high-accuracy sensors typically carried on weather balloons
- Revolutionize surface to stratosphere sampling, enhance weather forecasting capabilities, and further satellite retrieval and algorithm evaluation

