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NOAA/GML AirCore over the past decade(s)
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• Over a decade of NOAA/GML AirCore sampling with >100 CO2, CH4, CO profiles retrieved from select locations
• Routine, near-monthly balloon launches in Colorado: coordinated with A-train overpasses for OCO-2 evaluation
• Several small-scale field campaigns since 2018:

• Remote sensing evaluation within Total Carbon Column Observing Network (TCCON) : OCO-2, ground-based FTS 
inter-comparisons

• ICOS RINGO collaboration (Sodankylä, Traînou) – AirCore inter-comparisons, towards a global AirCore network
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NOAA/GML AirCore Sampling
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• Satellite trace gas retrievals cannot be calibrated, which lessens compatibility with ground-based observing networks
• Rely on resources like global TCCON, which is scaled to calibrated aircraft and AirCore GHGs traceable to WMO scales
• To-date, 11 AirCores launched coincidentally with OCO-2 overpasses in NE Colorado
• AirCores capture >98% of atmospheric column: less “extrapolation” involved, greater potential error reduction in retrievals by 

comparison to AirCore vs. aircraft
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Satellite trace gas retrieval evaluation using AirCore 

Aircraft ceiling 
(jet) 

Low bias, large variability 
in OCO-2 XCO2 retrievals



Stratospheric modeling efforts and comparison to AirCore

• Accurately modelling stratospheric CO2, 
CH4 is critical for improving apriori GHG 
profiles for ground-based FTS retrievals 
(e.g. TCCON)

• Also critical for investigating age of air , 
stratospheric dynamics

Age spectra from 2-D stratospheric model 
+ CO2 stratospheric boundary conditions 
(MLO, SMO) 
= CO2 time series corresponding to each 
Mean Age
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*Critical measurements made by NOAA/GML (OZWV, HATS)
used to develop model stratospheric CH4, N2O relationships

A. Andrews, with E. Fleming, F. Moore, D. Hurst, G. Dutton, J. Elkins

Strat. CO2 growth rate in 
1990’s ~1.46 ppm

1990s/2000s ER-2/ 
OMS/WB57 data*

CO2 on isochrons
AirCore



Strat CO2 growth rate in 
2010’s ~2.34 ppm
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Extended age spectra time 
series match AirCore data 
remarkably well

Stratospheric modeling efforts and comparison to AirCore



CarbonTracker (CT2019) evaluation of stratospheric CO2 using AirCores
7
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• CarbonTracker is NOAA’s CO2 inverse modeling framework for mole fraction, flux estimation (Jacobson 
et al., 2020; http://www.carbontracker.noaa.gov)

• CT assimilates routine NOAA CCGG Aircraft Network flask CO2 measurements to ~12-13 km MSL
• AirCore samples from 2009-2020 extend to ~30km MSL, provide some of the only routine GHG 

measurements in UT/LS for model evaluation
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New development: measurement of N2O in AirCores
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• Nitrous oxide (N2O) is potent 
GHG, long-lived: useful for 
investigating stratospheric 
circulation and change

• CO2  + N2O in routine AirCore 
samples informs stratospheric 
tracer-tracer relationships

• Demonstrated use of high-
precision Picarro N2O-CO + 4-
channel (CO2-CH4-CO-H2O) 
Picarro to measure species 
concurrently in AirCores

• First full N2O profiles retrieved in 
AirCores



New development:  High-altitude AirCore sampling platform
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• Biggest limitation with balloon-borne AirCore sampling is feasibility of recovery
• Custom design: portable, lightweight, optimized for AirCore and scientific payload
• Revolutionize surface to stratosphere sampling, enhance weather forecasting capabilities, and 

further satellite retrieval and algorithm evaluation 

Graphic design: Sydnee 
Masias



Summary
• We have a growing time series of retrieved AirCore profiles since ~2010 in Colorado
• Routine, long-term monitoring of the AirCore is useful tool in evaluating modeled greenhouse gases 

in the stratosphere
• As satellite community continues to grow, multiple end users in ground-, satellite-based remote 

sensing communities (NOAA CrIS, TROPOMI, MOPITT, A-train constellation, etc.) benefiting from 
routine AirCore sampling

• Collaboration between AirCore groups globally is crucial for furthering AirCore technique and 
working towards establishing global “AirCore Network”

• The ability to measure new species in AirCore whole-air samples opens up new possibilities for GML 
stratospheric observing capabilities

• As does a recoverable platform for high-altitude sampling
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NOAA/GML AirCore Sampling

• Over a decade of NOAA/GML AirCore sampling with >100 CO2, CH4, CO profiles retrieved from select locations
• Routine, near-monthly balloon launches in Colorado

• Now coordinated with A-train overpasses in NE Colorado for OCO-2 evaluation
• Several small-scale field campaigns since 2018 

• Remote sensing evaluation at U.S. TCCON stations: OCO-2, ground-based FTS inter-comparisons
• ICOS RINGO collaboration (Sodankylä, Traînou) – AirCore inter-comparisons, towards a global AirCore network
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• Total Carbon Column Observing Network (TCCON) is primary resource for evaluating satellite trace gas retrievals
• NASA’s Orbiting Carbon Observatory relies heavily on TCCON total-column CO2

• BUT ground-, satellite-based total column GHG retrievals cannot be calibrated, lessening compatibility with ground-
based observing networks tied to WMO trace gas scales, and utility for GHG flux estimation 

Satellite trace gas retrieval evaluation



TCCON FTS remote sensing evaluation 
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• AirCore is low-cost, low effort pathway 
to sample over 98% of atmospheric 
column

• Spaceborne greenhouse and trace gas 
retrievals cannot be calibrated, which 
lessens compatibility with long-term, 
calibrated ground-based network 
observations

• AirCore profiles are calibrated, tied to 
WMO scales, which provides a link 
between spaceborne observations and 
ground-based observing networks 



Age Spectra are from GSFC 2D Model (Eric Fleming) that was optimized 
to match in situ CO2 and SF6 balloon observations from 1990s/2000s:



Mean Age versus N2O and Mean Age versus CH4 relationships are surprisingly 
invariant throughout the lower/middle stratosphere:  
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CarbonTracker evaluation of stratospheric CO2 using AirCores

• CarbonTracker is NOAA’s CO2
modeling framework mole fraction, 
flux estimation

• CarbonTracker assimilates routine 
NOAA CCGG aircraft network flask 
CO2 measurements to ~12 km MSL

• AirCore samples to ~30km MSL 
provide some of the only routine 
GHG measurements in UT/LS for 
model evaluation
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NOAA CCGG aircraft 
network altitude ceiling

Jacobson et al., 2020, http://carbontracker.noaa.gov



New development:  High-altitude AirCore sampling platform
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• Biggest limitation with balloon-borne AirCores is feasibility of recovery
• Trees, accessibility, water all barriers to [quick] recovery and lab analysis

• Custom design: portable, lightweight, optimizes glide ratio for controlled descent rate (~10 ms-1) for more 
efficient AirCore stratospheric sample collection, reduction in meteorological sensor hysteresis



New development:  High-altitude AirCore sampling platform
19

• Balloon ascent, autopiloted 
descent

• Large payload capacity for 
housing multiple sensors (i.e. 
FPH, POPS) 

• Can return e.g. high-accuracy 
sensors typically carried on 
weather balloons

• Revolutionize surface to 
stratosphere sampling, 
enhance weather forecasting 
capabilities, and further 
satellite retrieval and 
algorithm evaluation 

Graphic design: Sydnee Masias


