# Single-Photon LIF: A new benchmark for measurements of atmospheric nitric oxide

Andrew Rollins, NOAA/CSL



- New spectroscopic technique for measuring NO well suited for aircraft or monitoring applications
- Significantly lower uncertainties at NO < ~20 ppt compared to chemiluminescence
- Potential for real-time measurements of NO isotope ratios

# NO: Central to tropospheric ozone production



Air quality control strategies hinge on understanding  $O_3$  production chemistry and sources of  $NO_x$ 



Farmer et al, ACP 2011

# NO: Central to OH production and VOC degradation



## Need for measurements of very low NO

"The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions"

Atmos. Chem. Phys., 19, 13701–13723, 2019 https://doi.org/10.5194/acp-19-13701-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Atmos Che and Pł

|                    | NO pptv |     |     |    |
|--------------------|---------|-----|-----|----|
|                    | 750     | 500 | 250 | Тр |
| CESM1-CAM4Chem     | 9       | 4   | 12  | 13 |
| <b>CESM1-WACCM</b> | 9       | 5   | 12  | 12 |
| CMAM               | 17      | 4   | 17  | 26 |
| EMAC-L47MA         | 8       | 4   | 11  | 14 |
| EMAC-L90MA         | 8       | 5   | 11  | 17 |
| GEOSCCM            | 9       | 5   | 13  | 13 |
| MOCAGE             | 26      | 14  | 17  | 20 |
| MRI-ESM1r1         | 10      | 5   | 20  | 32 |
| SOCOL3             | 48      | 10  | 14  | 25 |

Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

Yuanhong Zhao<sup>1</sup>, Marielle Saunois<sup>1</sup>, Philippe Bousquet<sup>1</sup>, Xin Lin<sup>1,a</sup>, Antoine Berchet<sup>1</sup>, Michaela I. Hegglin<sup>2</sup>, Josep G. Canadell<sup>3</sup>, Robert B. Jackson<sup>4</sup>, Didier A. Hauglustaine<sup>1</sup>, Sophie Szopa<sup>1</sup>, Ann R. Stavert<sup>5</sup>, Nathan Luke Abraham<sup>6,7</sup>, Alex T. Archibald<sup>6,7</sup>, Slimane Bekki<sup>8</sup>, Makoto Deushi<sup>9</sup>, Patrick Jöckel<sup>10</sup>, Béatrice Josse<sup>11</sup>, Douglas Kinnison<sup>12</sup>, Ole Kirner<sup>13</sup>, Virginie Marécal<sup>11</sup>, Fiona M. O'Connor<sup>14</sup>, David A. Plummer<sup>15</sup>, Laura E. Revell<sup>16,17</sup>, Eugene Rozanov<sup>16,18</sup>, Andrea Stenke<sup>16</sup>, Sarah Strode<sup>19,20</sup>, Simone Tilmes<sup>12</sup>, Edward J. Dlugokencky<sup>21</sup>, and Bo Zheng<sup>1</sup>

#### Need for measurements of very low NO

Northern Hemisphere Northern Hemisphere (b) 10 10 ........ ..... \*\*\*\*\*\*\*\*\*\*\*\*\* 8 8 .... ..... Altitude, km ..... ..... 6 .... 6 ... ..... .... ... ... 4 4 . . . .... 2 2 ATom-1 ATom-2 (summer) (winter) 0 C 30 0 10 20 40 50 0 10 20 30 40 50 Southern Hemisphere Southern Hemisphere 10 10 ..... ..... 8 8 ..... ...... ...... Altitude, km ..... ...... ..... \*\*\*\* Observation 6 6 ..... ..... Model ...... .... ATom-2 ATom-1 (summer) (winter) . . . . 0 20 30 20 0 10 30 50 0 10 40 50 40 NO, ppt NO, ppt Atmospheric Atmos. Chem. Phys., 20, 7753-7781, 2020 https://doi.org/10.5194/acp-20-7753-2020

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

#### Chemistry GU and Physics

NO



OH

#### Constraining remote oxidation capacity with ATom observations

Katherine R. Travis<sup>1,a</sup>, Colette L. Heald<sup>1,2</sup>, Hannah M. Allen<sup>3</sup>, Eric C. Apel<sup>4</sup>, Stephen R. Arnold<sup>5</sup>, Donald R. Blake<sup>6</sup>, William H. Brune<sup>7</sup>, Xin Chen<sup>8</sup>, Róisín Commane<sup>9</sup>, John D. Crounse<sup>10</sup>, Bruce C. Daube<sup>11</sup>, Glenn S. Diskin<sup>12</sup>,

#### Need for measurements of very low NO

Figure from David Miller, Penn. State

Sensitivity of modeled OH to ATom measurement uncertainties



#### Chemiluminescence: Ridley et al 1972, 1974, ...



 $NO + O_3 -> NO_2^*$  $NO_2^* -> NO_2 + hv (\lambda > 650 nm)$ 

- Typical signal rates 5-10 cps / ppt
- Typical background 500-1000 cps
- Cosmic ray background varies with altitude and latitude
- O<sub>3</sub> related background decreases during operation



# Laser Induced Fluorescence



NO + hv -> NO\* NO\* -> NO + hv'

- Typical signal rate 10 cps / ppt
- Typical background 10 cps
- Background is low and relatively stable throughout operation







Measurement Cell

UTC

# Detection limit / artifact test

- NO is calculated using online offline without any other zero determination
- Laboratory measurements of chemically scrubbed (KMnO<sub>4</sub>) zero air indicate sampling artifact is < 0.2 ppt.</li>
- $2\sigma$  1 Hz detection limit < 1 ppt



DC-8 rack installation of two-channel LIF instrument Deployed during FIREX-AQ, July/August 2019

- ~20" vertical rack space
- 110 lbs
- 2-sigma detection limit for 1s integration is ~ 1 ppt
- Accuracy 6 10 % depending on humidity
- For FIREX, shared inlet with ISAF





### Fiber Laser system

Custom-built fiber laser system produces ~ 1 mW @ 215 nm





FIREX Comparison with Ryerson CL Instrument on DC-8



#### FIREX Comparison with Ryerson CL Instrument on DC-8



Fire Plume

#### FIREX Comparison with Ryerson CL Instrument on DC-8





CL Time Response Long-Term / Monitoring Use

# Instrument used in 2-channel mode to measure NO and NO<sub>2</sub> for continuous operation > 2 months during CSL COVID-AQS



# Ongoing work: NO isotopologues

<sup>15</sup>N : NOx sources

<sup>18</sup>O: Peroxy radical chemistry



# Summary

- New single-photon LIF scheme developed and demonstrated on DC-8 to be a reliable alternative to chemiluminescence
- SP-LIF has practical advantages over CL including size, weight, operator effort and consumables
- Detection limit is < 1 ppt for 1 s integration
- Background, and potential uncertainties due to background are < 1 ppt
- Potential for NO isotope ratio measurements



# Thanks!

- Tom Ryerson
- Ilann Bourgeois
- Jeff Peischl
- Steve Brown
- Pam Rickly