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Background

* The atmospheric boundary layer (ABL) is a big deal for greenhouse
gas and air quality studies.

* Wind speed and mixing depth (ventilation factor) determines mole fraction
enhancements:

e AC = Fct ZM where AC is the mole fraction enhancement, F. is the flux of C, L is the
advection distance, z, is the mixing depth, and M is the wind speed.

* ABL wind direction drives plume location.

* ABL clouds / venting into the free troposphere / large-scale subsidence
determines ABL residence time.

* Atmospheric simulations of the ABL have errors — bias and random.



An example...

* How do WRF ABL winds and ABL depth compare to rawinsonde
measurements of the same properties in the US midcontinent?



An example...

* How do WRF ABL winds and ABL depth compare to rawinsonde
measurements of the same properties in the US midcontinent?

* OK, WRF isn’t one model...let’s ask this of a WRF ensemble.



@ PennState g5)yation of WRF-Chem CO, simulations in the
upper Midwest, summer
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Evaluation of mid-afternoon CO,, ABL
depth, and ABL winds.

Blue are tower-based CO, observation
points (PSU, NOAA).

Red are rawinsonde stations (NOAA).

Boxes show the model domains
(interior at 10 km).

Diaz-lsaac et al, ACP, 2018
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45-member WRF transport

ensemble

Diaz-lsaac et al,
ACP, 2018
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Ensemble varies the:

- boundary and initial
conditions (2),

- land surface model (3),
- boundary layer
parameterization (3),

- cumulus convection
parameterization (3) and
- cloud microphysics
parameterization (2).

No within-domain
meteorological data
assimilation.




@ pennstate Random errors are significant for all
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Afternoon conditions, daily comparison.
ABL wind (a) RMSE ~ 3 m/s.

ABL wind direction (b) RMSE ~ 50
degrees.

ABL depth (c) RMSE ~ 700 m. (YSU-
RUC consistently high).

Diaz-lsaac et al, ACP, 2018
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Many model configurations show mean biases

averaged over the study domain
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Nearly all ensemble members overestimate
boundary layer wind speeds.

Most ensemble members overestimate
boundary layer height.

MYNN with thermal diffusion LSM appears to
minimize both biases.

YSU-RUC appears to maximize biases.

No cumulus parameterization increases
biases.
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locations are always biased
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You can find model members with small
mean ABL depth bias in these locations. But
mean ABL wind speed is always too high.
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changes sign with longitude. -
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ABL CO, simulations are sensitive to nearly all physical
processes in WRF, and the variability is substantial

RMSD = root mean square deviation in midday ABL
CO, when varying a given model parameterization

LSM PBL CP MP Rea.
Physics/Reanalysis

Diaz-lsaac et al, ACP, 2018

Land Surface Model
(LSM)

Planetary Boundary Layer
(PBL)

Cumulus
Parameterization (CP)

global meteorological
Reanalysis (Rea)

Cloud Microphysics (MP)




Background

* The source of error are complex.
e All ensemble elements matter (Diaz-Isaac et al, 2018).

* Incoming solar radiation at surface is biased, improved land cover data
doesn’t fix urban ABL problems, urban surface fluxes (energy and
momentum) have large errors (Sarmiento et al, 2017).

 Model ensembles are often biased (sometimes all members) (Diaz-lsaac et al,
2018; Sarmiento et al, 2017).



Land surface
state and

What tO dO? fluxes

e Jim Wilczak. “Wheel of pain”

* Coupled system
* Hard to isolate one component

ABL state,
Rao.liaftiop, development,
precipitation fluxes, clouds

* Pop culture reference.
* https://www.dailymotion.com/video/x4blt6l



https://www.dailymotion.com/video/x4blt6l

What can we do to improve our modeling
systems?

* Fix.
* Improve the model physics.
* Kick.

* Use data assimilation to push the model around.

* Quantify with calibrated ensembles.

* Make model ensembles that have minimal bias, and whose spread is a fair
measure of model uncertainty.



What can we do to improve our modeling
systems?

* Fix.
* Improve the model physics.
* Kick.
* Use data assimilation to push the model around.

* Quantify with calibrated ensembles.

* Make model ensembles that have minimal bias, and whose spread is a fair
measure of model uncertainty.

 What do all of these approaches have in common?



What can we do to improve our modeling
systems?

* Fix.
* Improve the ABL model physics.
* Kick.

* Use data assimilation to push the ABL model around.

* Develop calibrated ensembles.

* Make model ensembles that have minimal bias, and whose spread is a fair
measure of ABL model uncertainty.

 What do all of these approaches have in common?
* They all require ABL observations.



ABL observational efforts being presenting
today...

* Ankur Desai — Long-term, ecosystem, point or small region, surface
flux — ABL observations.

* Sunil Baidar — Long-term, urban system, surface flux - ABL
observations.

* Me — Large-area, multi-season, airborne campaign, (surface flux) -
ABL observations.
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ACT-America ABL-relevant observations,
models, and ongoing research
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Overarching Goal

* The Atmospheric Carbon and Transport-America (ACT-America)
mission will enable and demonstrate a new generation of
atmospheric inversions for quantifying CO, and CH, sources and sinks
at regional scales.

* These inverse flux estimates will be able to:
e Evaluate and improve terrestrial carbon cycle models, and
* Monitor carbon fluxes to support climate-change mitigation efforts.
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Mission Goals

Quantify and reduce atmospheric transport uncertainties
Quantify and reduce uncertainties in prior CO, and CH, flux estimates

Evaluate the sensitivity of Orbiting Carbon Observatory-2 (OCO-2)
column CO, measurements to regional variability in tropospheric CO,

- All aimed to be applied to atmospheric inversions that use our long-term
atmospheric observing systems.

— Concerned with bias, random error, and spatial structure of errors in all
cases.
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What's unigue about ACT for ABL studies?

* Five-campaign, four-season, east-of-the-Rockies record of:
* ABL depth (lidar — continuous, about 50,000 km; in situ profiles, ~1,200)
e Cloud top retrievals (lidar — continuous, probably ~100,000 km)
* ABL winds (level legs — nearly 200,000 km)

* Spanning 30-40 weather systems, with pre-frontal, frontal, and post-frontal
flights
* With coincident GHG and other trace gas and meteorological data

* A multi-element ABL-GHG-calibrated ensemble modeling system
* Transport and GHG ensemble elements
* Transport calibrated on ABL winds and depth
* GHG calibrated on flux and mole fraction tower data




ACT-America flight
campaigns

Google Earth

T
HAEY ?-.,ggogk. eqrj[l?

Five, six-week campaigns over 3 years, covering each season and summer twice. ~25 flights / campaign.
Each campaign: 2 weeks in each of 3 regions across US (MidAtlantic, MidWest, SouthCentral).

About 50% of the data in the atmospheric boundary layer (ABL).
1140 total flight hours. About 1,500 flasks and 1,000 vertical profiles. ~400,000 km of flight data
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Ongoing, anticipated and desired analyses

* Create a well-documented, quality-checked data base of ABL
observations.

* Evaluate the ABL depth and winds in the models used for atmospheric
GHG inversions.
* |dentify biases.
* |dentify less-biased transport models.
* Improve inverse flux estimates by relying on the less-biased models.

e Use the ACT ABL depth and wind data to create better transport
model ensembles. Apply these to atmospheric inversions.

* Develop improved ABL simulations to implement in atmospheric
Inversion systems.
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A little about the observations

l:ic FiF L

* Winds — multi-level, orthogonal-heading calibration legs flown on
each aircraft during each campaign to remove biases.

* Performance suggests biases less than 1 m s
e Data manuscript in prep with details on wind calibrations

 Lidar ABL depth and cloud top data.
e Goddard’s Cloud Physics Lidar (CPL), first four flight campaigns.
* Langley’s High Altitude Laser Observatory (HALO), for the last flight campaign.

* Both retrieve cloud top and boundary layer top with high resolution and
accuracy using lidar backscatter.




Mixed Layer Height Processing Flow Diagram
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Comparison with Potential Temperature in optimal conditions
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Example — PBL top humidification
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Comparison of in-situ and lidar ABL depth retrievals

CPL, summer 2016 HALO ABL top compares very well with
4000 4——L L o 1. 1.1 1.1 in situ soundings.
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This isn’t brand new technology

« BOREAS (1994), SGP (1997), IHOP (2002) all had substantial airborne
lidar campaigns.



BOREAS — 1994 — central Canada
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Kiemle et al, 1997
Davis et al., 1997

Studies of ABL top
structure, statistics,
entrainment, relation to
surface thermodynamic
fluxes, link to water.

Multiple summer flights
over central Canada

Classic daytime clear air
convective boundary layer
case.

BOREAS airborne lidar backscatter. Local standard time at top. Warm colors = more backscatter. Note

horizontal scale is highly compressed.



IHOP: 7 June, 2002: Weak inversion, rapid morning ABL growth
17:09:28 Leg 53 Segment 29 17:10:22

Study of entrainment
zone structure using
~6,000 km of lidar ABL
observations.

US southern Great
Plains, spring 2002.

Altitude (m)

Distance (km)

Fig. 5 A lidar backscatter image from an 8- km segment from with Leg 53 on June 7. Altitude, ground colour
coding, and time are indicated as explained in Fig. 3

“Extreme entrainment” situation...ML scaling violated. Grabon et al., 2010, BLM
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FIG. 2. Vertical cross sections of water vapor (colors) and vertical velocity (arrows) for the Falcon flight legs 3 and 4 oriented
west—east at 37.4°N over southwestern Kansas. The aircraft flew (top) leg 3 from right {east) to left {(west) and turned back at 102°W
to (bottom) fly leg 4 on the same track. Top axis is longitude, bottom axis distance (km), and UTC time, 7 h ahead of LT. Maximum
vertical wind velocities are —4.2 ms~' in downward and 6.6 ms~' in upward directions. An arrow length corresponding to 150-m
altitude difference is 7 m s~—! in vertical velocity. The aspect ratio is about 1:7; that is, the cross sections are compressed horizontally
by a factor of 7. It is evident that strong contributions to the flux emanate from the largest thermals.

IHOP 2002

Airborne lidar
observations of vertical
velocity (NOAA) and water
vapor (DLR).

Airborne eddy covariance
flux profile measurement
demonstration.

Kiemle et al., 2007



This isn’t brand new technology

« BOREAS (1994), SGP (1997), IHOP (2002) all had substantial airborne
lidar campaigns.

* But none of these past campaigns are as extensive in space and time
as ACT, and none have the coincident density of in situ winds and
GHG measurements.

* And it has been slow work getting the atmospheric modeling
community to work with these data.
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Beginnings of comprehensive model-data
comparisons
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@ TS WRF-CPL ABL depth differences
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First steps toward ABL wind evaluation
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Work underway

Protocol is under development for retrieval of atmospheric transport
model column output, coincident with ACT lidar ABL depth retrievals
and in situ sounding.

Plan is to apply that protocol broadly — and conduct a multi-season,
large-scale, weather-aware evaluation of the ABL properties (wind,
depth) of the atmospheric transport models used for GHG inversion
studies (and to perform coincident evaluation of their GHG fields).
What follows depends in part on the findings, and the interest of the
research community in improving trace-gas relevant ABL properties of

atmospheric reanalyses.
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WRF-based calibrated GHG ensemble modeling system
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Figure 2. Rank histograms of the transport ensemble suite for 0 UTC (a) 925 hPa wind speed, (b) 925 hPa wind direction, Nt=7793 (a) St==1 8 (b) St==1 3 (C)
(c) PBL depth, and (d) midday average PBL CO, mole fractions. Dashed lines denote the ideal values of the rank histo-  0.25 S=20.2 0.05F 0.05F

grams. Nt denotes the total number of the observations used. S denotes the rank histogram score of the ensemble. The
dashed line is the ideal frequency of a flat distribution.
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This calibration was done with
rawinsonde data averaged over seasons
and the entire continent. Regional,
seasonal biases are likely to persist.
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Figure 5. Rank histograms of (a) calibrated biogenic flux ensemble suite, (b) the combination of the calibrated biogenic flux and transport ensemble suites, and
(c) the full ensemble with the inclusion of the uncertainties of transport, biogenic fluxes, and boundary conditions for the atmospheric CO, mole fractions.
Dashed lines denote the ideal values of the rank histograms. Nt denotes the total number of the observations used from six NOAA CO, tower sites. The locations

ic 1 1 1 1 | and information can be found in Figure 1a and Table 1. Data points represent individual hourly mean values, and the histograms are aggregated over all sites and
B u t t h IS 1S an 1m po rta nt b egl nnin g ° daytime hours of the entire year. S denotes the rank histogram score of the ensemble.



@ PennState

Ongoing, anticipated and desired analyses

* Create a well-documented, quality-checked data base of ABL
observations.

* Evaluate the ABL depth and winds in the models used for atmospheric
GHG inversions.

* |dentify biases.
* |dentify less-biased transport models.
* Improve inverse flux estimates by relying on the less-biased models.

e Use the ACT ABL depth and wind data to create better transport
model ensembles. Apply these to atmospheric inversions.

* Develop improved ABL simulations to implement in atmospheric
Inversion systems.

PLEASE JOIN THE EFFORT!
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Figure 1. (a) The simulation domain and locations of the observation. Shaded contour is terrain height in meters. Red triangles denote the locations of the
NOAA CO, towers used in this work, and the names of the towers are marked. The Information of these towers can be found in Table 1. White dots
denote the locations of the NOAA rawinsonde stations. Note that we removed WGC and BAO from the model calibration procedure due to the local
contamination. (b) The locations of the AmeriFlux towers. Information describing these towers can be found in Table S1.
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