Portable Optical Particle Spectrometer and the the Value to Stratospheric Aerosol Research

eGMAC

Monday, July 20, 2020

Elizabeth (Lizzy) Asher^{1,2}, Troy Thornberry^{1,2}, RuShan Gao², Emrys Hall^{1,3}, Allen Jordan^{1,3}, Dale Hurst^{1,3}, David Fahey²

¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder

² NOAA Chemical Sciences Laboratory, Boulder

³ NOAA Global Monitoring Laboratory, Boulder

Goal to increase observations of stratospheric aerosol and albedo

• stratospheric aerosol is predominantly made up of sulfate, with contributions from organics and biomass burning aerosols

• sulfate aerosols are naturally produced from from sulfur gases (e.g. SO₂, OCS) lofted into the upper troposphere through large convective systems in the tropics or emitted from volcanoes

• our goal is to explore and monitor stratospheric aerosol size distributions under b conditions, as well following natural injections of sulfate from explosive volcanic eruptions and very large fires

Figure adapted from Kremser et al., Rev. Geophys., 2016.

Printed Optical Particle Spectrometer

POPS specifications:

- Single-particle detection
- 140 2500 nm diameter range
- $3 5.5 \text{ cm}^3 \text{ s}^{-1}$ sample flow
- 550 g
- 5 Watts

Gao et al., AS&T 2016

A brief timeline of POPS in the stratosphere

A powerful tool to explore and document stratospheric aerosol size and abundances since 2015

Figures courtesy of RuShan Gao, NASA, and Handix Scientific

POPS Measurement is Simple and Robust

- POPS measures light scattered from a 405 nm (Blu-Ray) laser when a particle passes through the beam
- The intensity of the scattered light is a function of the particle size
- Peak height and width is recorded for each particle
- Calibrated Mie theory calculation used to determine particle size from the signal
- Requires assuming an index of refraction and spherical shape (a requirement for all optical particle sizing instruments)

One Full Year of POPS Balloon Launches in Boulder, CO

- NASA supported POPS measurements of stratospheric aerosols for SAGE III-ISS aerosol retrieval validation started in January 2019
- POPS sonde launches from Boulder (12/year), timed to match SAGE III-ISS observations
- 0.5 km average particle concentration vs altitude
- Using 36 size bins of particle diameter
- Starting in July 2020 with the NOAA ERB B²SAP project, we expect to 26 launches from Boulder (one every two weeks)

Photo credit: Jim Elkins

Thornberry and Asher unpublished data

A Closer Look at Stratospheric Aerosol Structure

Summary of Launches in Lauder, NZ

- POPS sonde launches from Lauder, NZ (4/year)
- 0.5 km altitude bins
- Currently 15 size bins based on particle diameter transmitted via iMET
- working on higher bandwidth iMet-54 for transmission of >36 bins, if desired

Thornberry and Asher unpublished data

April 30, 2019

8

Stratospheric aerosol enhancements appeared related to Australian bushfires

Source: NASA January 1, 2020

Thornberry and Asher unpublished data

January 27, 2020

Stratospheric aerosol enhancements appeared related to Australian bushfires

NOAA HYSPLIT MODEL Backward trajectories ending at 2300 UTC 27 Jan 20 GFSQ Meteorological Data

-35

Conclusions

- → Reoccurring natural perturbations and the potential for future anthropogenic perturbations to stratospheric aerosol require frequent observations of aerosol distributions in the stratosphere, over a range of latitudes.
- → POPS has been used to explore and monitor stratospheric aerosol size distributions in both the northern and southern hemispheres in 2019-2020.
- → In one year, these launches have captured changes in size distributions of stratospheric aerosol, following both volcanic eruptions and very large fires.
- → Increasing the number of launches under the B²SAP project will be used to further study the seasonal variability in stratospheric aerosol, and the influence of large volcanic and pyroCB events to determine a contemporary baseline of stratospheric aerosol.

Thank You

eGMAC

Monday, July 20, 2020

Elizabeth (Lizzy) Asher^{1,2}, Troy Thornberry^{1,2}, RuShan Gao², Emrys Hall^{1,3}, Allen Jordan^{1,3}, Dale Hurst^{1,3}, David Fahey²

¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder

² NOAA Chemical Sciences Laboratory, Boulder

³ NOAA Global Monitoring Laboratory, Boulder

Assuming an index of refraction for sizing

