The Arctic Carbon Cycle and its Response to Changing Climate

Lori M. Bruhwiler NOAA Earth System Research Laboratory Global Monitoring Division

"Scene in the Arctic", William Bradford, 1880

vGMAC 2020

7/10/2020

ARCTIC CLIMATE CHANGE AND EFFECTS ON THE CARBON CYCLE

1137-1850 PgC In Arctic soils

Possible 21st Century Emissions :

0.9 +/- 0.5 PgC/yr ~ 30 TgCH₄/yr

(assuming constant annual emissions)

(Schurr et al., 2015,2013)

Estimating the Carbon Fluxes

Magina Contractions

Top-Down (TD)

Torsten Sachs

TD: Atmospheric Observations Give Spatial and Temporal Information About Emissions

(but you need to account for atmospheric transport)

Growth Rate Anomalies (ppb/yr)

7/10/2020

vGMAC 2020

TD: Atmospheric Inversions – Synthesizing Models and Observations

Carbon Flux Models

Remotely- Sensed Column Data

In Situ Surface Network Data

Earth System Model With Data Assimilation Now: TM5 Future: NGGPS

vGMAC 2020

Carbon Analyses

Estimated Fluxes

www.esrl.noaa.gov/gmd/ccgg/carbontracker/ www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/

FLUXNET Sites (2015)

Need ~20 yrs to detect trends (Baldocchi et al, 2018)

DORR DO COMPLETE

Chu et al., 2017

Do TD and BU CO₂ Flux Estimates Agree ?

FLUXCOM, NDVI-Based Approaches, SiB4 – Arctic is Neutral or a Small Sink (Natali et al., 2019 – Arctic is a Source)

Inversions – Arctic is a Sink

7/10/2020

vGMAC 2020

Do TD and BU CH₄ Flux Estimates Agree ?

Table 1. Arctic CH₄ Budget; Bottom-Up Versus Top-Down^a

tante to theme at a second of tensor of tensor of		
	$Tg y^{-1}$	Study
Bottom-Up Estimat	tes	
Lakes and ponds $> 50^{\circ}N$	$\textbf{16.5} \pm \textbf{9.2}$	Wik et al. [2016b]
Lakes and ponds > 60°N (bLake4Me model)	11.9	Tan and Zhuang [2015]
Rivers and streams > 54°N	0.3	Bastviken et al. [2011]
Rivers and streams > 54°N	7.5	Stanley et al. [2016]
Reservoirs > 54°N	1.2	Bastviken et al. [2011]
Arctic Ocean + Beaufort and Chukchi Seas (<82°N)	2	Kort et al. [2012]
ESAS	2.9	Thornton et al. [2016]
ESAS	17	Shakhova et al. [2014]
Wetlands > 60°N	23.2	Zhang et al. [2004]
Wetlands > 53.1°N (CarbonTracker prior model, based on Bergamaschi et al. [2005])	31	Bruhwiler et al. [2014]
Wetlands > 50°N (ORCHIDEE model)	31 ± 5	Bousquet et al. [2011]
Sources sum (minimum–maximum)	59.7 (36.9-89.4)	
Top-Down Inverse Model	Estimates	~ 2.5x !
>60°N, all natural sources	23±5	Bruhwiler et al. [2014] Saunois et al. [2016]
ESAS	0-4.5	Berchet et al. [2016]

Thornton et al., 2016, also AMAP, 2015

7/10/2020

vGMAC 2020

The Arctic Network: We Need Long Data Records toDetect Trends

Station name (Country)	Latitude / Longitude	Height, m	Sampling History							
		above sea level —	1985	1990	1995	2000	2005	2010	2015	-
Alert (Canada)	82.5°N / 62.5°W	210		-					•	Fla
Behchoko (Canada)	62.8°N/116.1°W	179								Ha Ma
Cambridge Bay (Canada)	69.1°N / 105.1°W	38							••••	
Churchill (Canada)	58.7°N / 93.8°W	29					•			
Inuvik (Canada)	68.3°N / 133.5°W	100								
Mould Bay (Canada)	76.3°N / 119.4°W	30								
Pallas (Finland)	68°N / 24.1°E	560								
Summit (Greenland)	72.6°N / 38.4°W	3238			•					
Storhofdi (Iceland)	63.4°N / 20.3°W	118								
Ny-Ålesund (Norway)	78.9°N / 11.9°E	474								
Station M (Norway)	66°N / 2°E	0								
Cherskii (Russia)	68.5°N/161.5°E	30								
Teriberka (Russia)	69.2°N / 35.1°E	40								
Tiksi (Russia)	71.6°N / 128.9°E	8								
Barrow (USA)	71.3°N / 156.6°W	11								
CARVE Tower (USA)	65°N / 147.6°W	611						1		
Cold Bay (USA)	55.2°N / 162.7°W	21	•••••							
Shemva (USA)	52.7°N/174.1°W	40								

Arctic Monitoring Sites

9

AMAP,2015

Regional Gradient Analyses Reveal Changing CO₂ Fluxes

Scant Evidence for Increasing CH₄ Emissions

Evidence for Increasing Respiration

The Atmosphere is Noisy and Non-Zonal

The Inter-Polar Difference (IPD)

Reasonable Agreement Between Analysis CH₄ and Observations

Variability and Trends are Dominated by Transport

Lots of variability in the pole-topole gradient between sites.

Not much difference between constant and varying emissions

How many sites are needed to get a representative average?

Trend is present in both simulations implying lower latitudes changes are driving it.

What Do Atmospheric Inversions Say?

Considerable disagreement between inversions.

Black line is annual flux averaged over inversion ensemble.

Slight, statistically significant trend towards increased uptake of CO₂. (-0.01 PgC/yr)

Slight, statistically significant trend toward higher CH₄ emissions. (0.20 Tg/yr)

Are these trends likely to be robust? Probably not!

New Joint CH₄ - ¹³CH₄ Inversions

No Trend in Microbial Emissions

About Equal Contributions from Fossil and Microbial Sources

Using ¹³CH₄ Gives Higher Microbial Emissions

Wetland Map Has Relatively Low Areas Compared to Previous Maps

Conclusions

- CO₂ emissions are likely changing in response to changes in Arctic Climate, but there is not yet strong evidence of changes in CH₄ emissions, although small changes cannot be ruled out.
- The Arctic observing network needs to be expanded.
- Globally distributed observations are essential.
- We need a strong international commitment to sustaining long-term data records, insuring their quality, and sharing data.

