

Significant biospheric CO₂ fluxes in the Los Angeles Basin revealed by atmospheric radiocarbon (¹⁴CO₂)

John Miller^{1,2} Scott Lehman³, Kristal Verhulst⁴, Charles Miller⁴, Riley Duren⁴, Vineet Yaday⁴, Sally Newman⁵ 1. NOAA/GMD 2, CU7CIRES 3, CU/INSTAAR 4, NASA/IPL 5: Callech 6, Earth Networks

hanks to: Chris Sloop, Jack Higgs, Eric Moglia, Pat Lang, Ed Dlugokencky and Jon Kofler

LA Basin ¹⁴CO₂ sampling sites

- → Most sites have in situ CO₂, CH₄ and CO with eventual goal of calculating fluxes.
- → Three sites had 3x/week flask sampling in 2015
- → Goal with flasks was to separate total CO₂ into fossil and biogenic fractions.

What you need to know about radiocarbon (¹⁴C)

- 1. Produced via cosmic rays; absorbed by photosynthesis; decay with a half-life of ~6000 yrs.
- 2. \rightarrow Fossil fuels have no ¹⁴C; but ¹⁴C_{bio} ~ ¹⁴C_{atmos}.
- 3. \rightarrow CO₂ variations can be split into bio and fossil using ¹⁴C.
- 4. Low concentrations: [¹⁴CO₂] ~ 400 x 10⁻¹⁸ mol/mol; measured by Accelerator MS on 2 liters of air.
- 5. ¹⁴C/C expressed as $\Delta = [(^{14}C/C)/R_{std} 1]1000$ in "per mil"

Measurements of local and background CO₂ and Δ^{14} C allow us to determine C_{ff} and C_{bio}.

4

CO₂ and ¹⁴CO₂ data show large variations with a clear fossil fuel contribution.

Isotopic mixing analysis shows substantial biogenic contribution.

Pure fossil slope = -1000 per mil

Slope (Isotopic source) = -783 per mil \rightarrow CO₂xs is ~ 20% biogenic

Biospheric contribution to total CO_2 is substantial.

2015.0 2015.2 2015.4 2015.6 2015.8 2016.0

- → C_{xs} and C_{ff} are highly correlated, yet the residual C_{bio} has a coherent signal.
- → Seasonally varying biosphere contribution with summer uptake.
- → Variability in CO₂xs,bio and fos are likely dominated by changes in mixing.

C_{bio} has a lot of biofuel and human respiration

Sector	Fossil (TgC/yr)	Bio (TgC/yr)
Residential	2.85	0.37
Commercial	2.46	0.11
Industrial	11.48	1.91
Electricity Production	5.47	0.81
On-road	19.47	1.50
Other	3.99	0.01
Total	45.72	<mark>4.72</mark>

State of CA inventory and Vulcan 3.0

Biofuel:Fossil-Fuel Emission Ratio = 0.10

So. Cal. Population	Respiration+Excretion (TgC/vear)	Fossil emissions (TgC/vr)	5
18,609,235	2.62	45	.21

Human Bio: Fossil Emission Ratio = 0.06

Total Bio:Fossil Emission Ratio = R_{bio} = 0.16

For each sample, we define

$$C_{bio}' = C_{bio} - R_{bio} \times C_{ff}$$

which captures the signal of the urban biosphere. $\rightarrow C_{bio}' \sim C_{bio} - 2 \text{ ppm}$

C_{bio}' has clear seasonality that correlates with city water use, not rainfall.

Is such a large urban biospheric signal realistic?

MODIS VCF and AVIRIS flights (Wetherly et al., 2018)

- ~14% tree + turf in our footprint
- McPherson et al., 2011
 - 12% irrigated lawn cover
 - 21% tree cover
- Urban ecosystems: parks, lawns, golf courses, etc.
 - Within footprint of observations
 - Only urban ecosystems can explain negative C_{bio}
 - Surrounding unmanaged ecosystems
 - Fluxes mostly out of phase with urban observations.
 - Generally outside footprint.

Assuming all CO₂ enhancement is fossil leads to seasonally varying errors.

We can transform ¹⁴C data to create a synthetic continuous CO₂ff time series using continuous CO.

a. $COxs:CO_2 fos (R_{CO})$ ratios from flasks ~ 10 ppb/ppm. b. $CO_2 fos_synthetic = COxs_continuous/R_{CO}$ c. Agrees reasonably well with Hestia fluxes convolved with WRF-STILT footprints ($CO_2 fos_simulated$): R=0.69; slope=0.81

Note: ~10% bias if R_{CO} calculated with CO_2xs instead of CO_2ff

Summary and implications

- 1. LA CO_2 bio is seasonal and appears to be controlled by irrigation.
- 2. CO_2xs provides a seasonally biased view of CO_2ff .
 - 1. Remote-sensing and *in situ* approaches for urban CO₂ fluxes need to account for biospheric CO₂.
- Continued and widespread measurement of urban biosphere fluxes will be required to isolate the fossil fuel emissions signal, even for generally dry (or cold) areas. Some combination of ¹⁴C, CO and urban biosphere modeling will probably be required.

C_{bio}' Sensitivity Tests

Red=control; Blue=on-road-only ER; Green=NWR background; Purple=BRW 14C background. 16

'Natural' ecosystem eddy-fluxes

Southern California Climate Gradient study sites, Ameriflux, M Gouldern PI

LANDSAT 30 m Vegetation (EVI)

LANDSAT 30 m EVI zoomed in shows even more.

 \rightarrow Google Earth (~50 cm) shows yet more.

Wintertime biospheric CO_2 fraction averages ~50% for regions; ~ 20% for cities

Thanks to: K. Rozanski, M. Zimnoch (Poland); I. Levin (Germany); Morgan Lopez(France); L. Zhou (China); Korea-China Center for Atmos. Res.

Atmospheric ¹⁴CO₂ looks just like fossil CO₂

-2.5 per mil Δ^{14} C = 1 ppm CO₂-fossil

