Evaluating public-transit platforms as a cost-effective component of urban monitoring & initial observations during the Covid-19 lockdown

Logan Mitchell & Derek V. Mallia

Coauthors: Ben Fasoli Lewis Kunik Ryan Bares Daniel Mendoza Kevin Gurney John C. Lin

Department of ATMOSPHERIC SCIENCES

MINES AND EARTH SCIENCES | THE UNIVERSITY OF UTAH

Salt Lake City Monitoring:

- Developing novel monitoring strategies
- Addressing science & policy questions related to greenhouse gases and air pollutants

SLC network

Scientific question: *What is the value of near-surface mobile CO*₂ *observations?*

- Does incorporating mobile CO₂ observations offer meaningful improvements relative to traditional observation networks?
- How can this be quantified? What are the implications for urban monitoring network design?
- We use an **inverse modeling framework** where mobile and non-mobile measurements are used to constrain urban CO₂ emissions

Inverse modeling framework

$$\mathbf{\hat{s}} = \mathbf{s}_p + (\mathbf{H}\mathbf{Q})^T (\mathbf{H}\mathbf{Q}\mathbf{H}^T + \mathbf{R})^{-1} (\mathbf{z} - \mathbf{H}\mathbf{s}_p)$$

4 Inversions were carried out:

- 1. Inversion with stationary sites only (DBK, WBB, SUG, and RPK)
- 2. Configuration with stationary and mobile observations (TRAX Red and Green Lines)
- 3. TRAX data only (red & green line)
- 4. SUG site only (our most centrally located station)

TRAX data points along roadways excluded to avoid issues with tail pipe emissions

Inversions only performed during the afternoon (1800-2300 UTC)

Post.

Emissions

Post.

Emissions

- Posterior emissions are higher with mobile observations.
- Primarily a spatial signal of emissions increase in SW part of the city

Prior Emissions [µg m⁻² s⁻¹] SLC 25 20 15 1-215 10 15-5 Posterior emissions are higher with mobile observations.

Post.

Emissions

Post.

Emissions

 Primarily a spatial signal of emissions increase in SW part of the city

- Uncertainty covariance matrix quantifies the reduction in emission uncertainty.
- Key point:

Uncertainty reduction with 1 mobile site is > 4 stationary sites

 Implications for urban monitoring network design

Emission signal magnitude is inversely proportional to the footprint

Monitor location	Footprint	Signal magnitude	Obs type
Point source	Small	Large	Flux tower
City scale	Medium	Medium	~100m tower or building
Regional	Large	Small	Aircraft or satellite

- Big question: What is the optimal urban observing system to detect changes in emissions?
- Public transit is a blend of near surface observations that also have a city spatial scale.
- The Covid-19 lockdowns are a "natural experiment" to test urban monitoring systems.

CO₂ during Covid-19 Lockdown:

- 2020 had lower excess CO₂
- Afternoon reduction prominent around downtown & major roads

40

30

20

TRAX March 15-April 31 CO₂ during hours: 08-12.

Morning

2019 2020

Summary

- The mobile TRAX network has a positive impact on our inversion
- A single public transit-mounted instrument:
 - Significantly outperforms a single stationary site
 - Comparable to a high-precision CO₂ network with 4 stations (~\$50,000 vs. \$200,000 dollars)
 - Produces a large reduction of uncertainty over a broad urban area
- Results are promising. Can it be reproduced in another city? Using electric buses?
- Covid-19 lockdown is a unique natural experiment to test monitoring capabilities. Observations show a large springtime 2019-2020 difference in excess CO_2 . WRF simulations starting today...

Extra slides

CO₂ average diurnal cycle

General results:

- Simulations using CO₂ observations from TRAX + stationary sites performed reasonably from Sept-Oct 2015
- Corrections only applied during midafternoon
- SUG was the most improved site (our center-most observation site), while Daybreak was our least improved site (this was on the edge of our domain)
 - Likely due to a combination of factors including: smaller emissions, weaker spatiotemporal influence, limited emission uncertainty in this area

Using larger (4 ppm) measurement uncertainty to simulate corrections using a low-cost network

- > Allows the inversion simulation to allocate emissions corrections to the SW Salt Lake Valley.
- ➤ It is unclear if this is "more accurate" or not. Further analysis is needed.

Observations:

- Best data availability for CO₂ during the fall of 2015 for TRAX
 - Also wanted to pick a time where carbon fluxes from the biosphere are small, while also selecting a time period outside of cold-pool season
 - Only selected observations during the afternoon 18-23z (12-5:00 PM LST)

Lots of data associated with TRAX...!

- Each TRAX transect could consist of >1000 of more CO₂ measurements, with ~700 transects total, during the time of interest!
- As a result, we opted to bin the TRAX data; however, in order to determine the length of the bin, we had to run a variogram analysis on our TRAX data
- Variogram analysis indicated that an appropriate bin length $= \sim 2.1$ -km

Model Data Mismatch:

$$\mathbf{\hat{s}} = \mathbf{s}_p + (\mathbf{H}\mathbf{Q})^T (\mathbf{H}\mathbf{Q}\mathbf{H}^T + \mathbf{R})^{-1} (\mathbf{z} - \mathbf{H}\mathbf{s}_p)$$

 $R_i = R_{part} + R_{aggr} + R_{eddy} + R_{bg} + R_{transPBL} + R_{transWIND} + R_{ocean} + R_{instr} + R_{other}?$

 $R_{part} = .1 \text{ ppm}$ Computed from trajectory analysis $R_{aggr} = 40\%$ of the mean CO2 enhancement $R_{aggr} = 40\%$ of the mean CO2 enhancement $R_{eddy} = 0 \text{ ppm}$ Mean RMSE between HDP obs, HDP
smoothed data, and modeled $R_{pBL} = 7\%$ of the mean CO2 enhancementLin and Gerbig (2005) $R_{trans} = 35\%$ of the mean CO2 enhancementComputed from STILT transport error
calculation following Lin and Gerbig (2005) $R_{bio} = 25\%$ From Doug Catherine's bio inventory $R_{instru} = .25 \text{ ppm} + .25 \text{ ppm}$ (for TRAX receptors)

Exciting new project mapping air pollution using Google Street View Cars!

- 1. Develop hyperlocal hotspot identification and emissions quantification using STILT.
- 2. Inverse analysis of emission inventories.
- 3. Development of air pollution exposure modeling using machine learning.

Targeted species: CO_2 , CH_4 , CO, NO_x , PM_2 , BC

Hyperlocal source apportionment

3.) Emission Inventories (Hestia + ACES v2)

2.) Footprint weighting

4.) Concentration & emission ratios

Hyperlocal source apportionment

Easy Cases:

Hard Cases:

