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TRAX
Public-transit based measurements

Google Street View
Mobile observations

• Developing novel 
monitoring strategies

• Addressing science & 
policy questions related 
to greenhouse gases and 
air pollutants

KSL Chopper
Regular vertical profiles

http://utahaq.chpc.utah.edu/

SLC network
Salt Lake City Monitoring:

http://utahaq.chpc.utah.edu/


O3 Seasonal average

CH4 Annual averageCO2 Annual average
LandfillBrick factoryNatural gas 

power plant

Higher O3 on 
urban periphery

PM2.5 Case studies

Typical patterns during 
inversions, thermal/terrain 

circulations, etc.

Lower CO2 on 
urban periphery

Titration of O3 by 
NOx along the I-15 

freeway. 

Higher CO2
along roads



Scientific question: What is the value of near-surface mobile 
CO2 observations?

• Does incorporating mobile CO2 observations offer meaningful improvements relative to 
traditional observation networks?

• How can this be quantified?  What are the implications for urban monitoring network design?

• We use an inverse modeling framework where mobile and non-mobile measurements are used 
to constrain urban CO2 emissions



Inverse modeling framework

STILT backward trajectories  driven by 
WRF, with WRF runs optimized based 
in results in Mallia et al. (2015)

Spatiotemporal influence ‘H’

Iσ = diagonal matrix that describes
prior uncertainties

E = spatial covariance matrix

D = temporal covariance matrix

Prior covariance matrix ‘Q’ Prior ‘Sp’

Rpart = .1 ppm

Raggr = 40% of mean enhancement

Reddy = 0 ppm

Rbg = 1.9 ppm

RPBL = 7% of mean enhancement

Rtrans = 35% of mean enhancement

Rbio = 25% of bio enhancement

Rinstru = .25 ppm

‘R’ matrix

z: Observations



4 Inversions were carried out:

1. Inversion with stationary sites only (DBK, 
WBB, SUG, and RPK)

2. Configuration with stationary and mobile 
observations (TRAX Red and Green Lines)

3. TRAX data only (red & green line)
4. SUG site only (our most centrally located 

station)

TRAX data points along roadways excluded 
to avoid issues with tail pipe emissions

Inversions only performed during the afternoon 
(1800-2300 UTC)



Green line:Observations Red line: Observations

Prior Prior

PosteriorPosterior



• Posterior emissions 
are higher with 
mobile 
observations.

• Primarily a spatial 
signal of emissions 
increase in SW part 
of the city

TRAX only

All sites Towers only (4 sites)

Towers only (1 site)

+33% +21%

+30%
+8%



TRAX only Towers only (1 site)

Towers only (4 sites)All sites

+33% +21%

+30%
+8%

• Posterior emissions 
are higher with 
mobile 
observations.

• Primarily a spatial 
signal of emissions 
increase in SW part 
of the city



• Uncertainty 
covariance matrix 
quantifies the 
reduction in emission 
uncertainty.

• Key point:
Uncertainty reduction 
with 1 mobile site is > 4 
stationary sites

• Implications for urban 
monitoring network 
design

TRAX only

All sites Towers only (4 sites)

Towers only (1 site)



Emission signal magnitude is inversely proportional to the footprint

• Big question: What is the optimal urban observing system to detect changes in 
emissions?

• Public transit is a blend of near surface observations that also have a city spatial 
scale.

• The Covid-19 lockdowns are a “natural experiment” to test urban monitoring 
systems.

Monitor location Footprint Signal magnitude Obs type
Point source Small Large Flux tower

City scale Medium Medium ~100m tower or building
Regional Large Small Aircraft or satellite
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CO2 during Covid-19 Lockdown:
• 2020 had lower excess CO2

• Afternoon reduction prominent around 
downtown & major roads

Morning

Evening

Afternoon



Summary
• The mobile TRAX network has a positive impact on our inversion

• A single public transit-mounted instrument:
• Significantly outperforms a single stationary site
• Comparable to a high-precision CO2 network with 4 stations (~$50,000 vs. 

$200,000 dollars)
• Produces a large reduction of uncertainty over a broad urban area

• Results are promising.  Can it be reproduced in another city?  Using 
electric buses?

• Covid-19 lockdown is a unique natural experiment to test monitoring 
capabilities.  Observations show a large springtime 2019-2020 
difference in excess CO2. WRF simulations starting today…



Thanks To:



Extra slides
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CO2 enhancements at SUG

CO2 average diurnal cycle

DBK

RPK SUG

WBB
General results:

• Simulations using CO2 observations 
from TRAX + stationary sites 
performed reasonably from Sept-Oct 
2015

• Corrections only applied during mid-
afternoon

• SUG was the most improved site 
(our center-most observation site), 
while Daybreak was our least 
improved site (this was on the edge 
of our domain)

 Likely due to a combination of 
factors including: smaller 
emissions, weaker 
spatiotemporal influence, 
limited emission uncertainty in 
this area



Using larger (4 ppm) measurement uncertainty to simulate corrections using a low-cost network

 Allows the inversion simulation to allocate emissions corrections to the SW Salt Lake Valley.
 It is unclear if this is “more accurate” or not.  Further analysis is needed.

All obs
+33%

“Low cost”
+27%



SUG only SUG, DBK, RPK, WBB

TRAX only All observations
All obs. w/ 4 ppm 

uncertainty

Red line 
comparison

Obs. mean = 408.0 ppm 
Prior mean = 405.5 ppm 

mean = 406 ppm mean = 407.1 ppm 

mean = 406.9 ppm mean = 407.3 ppm mean = 407.1 ppm 



Green line 
comparison

SUG only SUG, DBK, RPK, WBB

TRAX only All observations
All obs. w/ 4 ppm 

uncertainty

Obs. mean = 411.0 ppm 
Prior mean = 406.5 ppm 

mean = 407.6 ppm mean = 409 ppm 

mean = 408.6 ppm mean = 409.3 ppm mean = 409 ppm 



Source: Mitchell et al. 2018

CO2 observations

AQ observations

DAQ AQ obs.

Red line
Green line
Blue line (not used)

• Best data availability for CO2 during the fall of 2015 for TRAX 
• Also wanted to pick a time where carbon fluxes from the biosphere are small, while also selecting 

a time period outside of cold-pool season

Met. observations

• Only selected observations during the afternoon 18-23z  (12-5:00 PM LST)

Observations:



Lots of data associated with TRAX…!

• Each TRAX transect could consist 
of >1000 of more CO2
measurements, with ~700 transects 
total, during the time of interest!

• As a result, we opted to bin the 
TRAX data; however, in order to 
determine the length of the bin, we 
had to run a variogram analysis on 
our TRAX data

• Variogram analysis indicated that an 
appropriate bin length  = ~2.1-km

• The red line has a total length of ~40-km, thus we ended up with 20 bins 
(green line length = ~24-km, 12 bins)



Model Data Mismatch:

Rpart = .1 ppm
Raggr = 40% of the mean CO2 enhancement 

Reddy = 0 ppm

Rbg = 1.9 ppm

RPBL = 7% of the mean CO2 enhancement 

Rtrans = 35% of the mean CO2 enhancement 
Rbio = 25%
Rinstru = .25 ppm

Computed from trajectory analysis

Mean RMSE between HDP obs, HDP 
smoothed data, and modeled  
Lin and Gerbig (2005)
Computed from STILT transport error 
calculation following Lin and Gerbig (2005)
From Doug Catherine’s bio inventory

+ .25 ppm (for TRAX receptors)



Exciting new project mapping air pollution using 
Google Street View Cars!
1. Develop hyperlocal hotspot identification and 

emissions quantification using STILT.
2. Inverse analysis of emission inventories.
3. Development of air pollution exposure modeling 

using machine learning.

Targeted species:
CO2, CH4, CO, NOx, PM2.5, BC



Hyperlocal source apportionment
2.) Footprint weighting1.) Measurements

4.) Concentration & emission ratios3.) Emission Inventories (Hestia + ACES v2)



Easy Cases:
Hyperlocal source apportionment

Hard Cases:

Refineries

Wastewater 
treatment

Wetlands



Downtown

Residential w/ 
elevation & 

socioeconomic 
gradient
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