(58-220418-C) Global Emissions of HCFC-141b Have Been Rising Since 2017

L. Western^{1,2}, A. Redington³, A.J. Manning³, C.M. Trudinger⁴, L. Hu^{5,1}, S. Henne⁶, X. Fang⁷, L. Kuijpers⁸, C. Theodoridi⁹, J. Arduini¹⁰, B. Dunse⁴, A. Engel¹¹, P. Fraser⁴, C. Harth¹², P. Krummel⁴, M. Maione^{10,13}, J. Mühle¹², S. O'Doherty², S. Park¹⁴, H. Park¹⁴, S. Reimann⁶, P.K. Salameh¹², D. Say¹⁵, R. Schmidt¹², T. Schuck¹¹, C. Siso^{5,1}, K. Stanley², I. Vimont^{16,1}, M.K. Vollmer⁶, D. Young², R. Prinn⁷, R.F. Weiss¹², S.A. Montzka¹, and M. Rigby²

¹NOAA Global Monitoring Laboratory (GML), Boulder, CO 80305; 720-319-8482, E-mail: luke.western@noaa.gov ²University of Bristol, School of Chemistry, Bristol, United Kingdom

³UK Meteorological Office, Exeter, United Kingdom

⁴Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, Australia

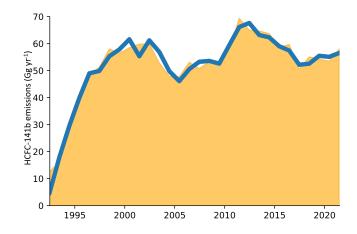
⁵Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

⁶Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland ⁷Massachusetts Institute of Technology, Center for Global Change Science, Cambridge, MA 02139 ⁸Eindhoven Centre for Sustainability, Technical University Eindhoven, Eindhoven, Netherlands ⁹Natural Resources Defense Council, Washington, D.C. 20005

¹⁰University of Urbino, Department of Basic Sciences and Foundations, Urbino, Italy

¹¹Goethe University, Institute for Atmospheric and Environmental Sciences, Frankfurt, Germany

¹²Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92037


¹³Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Bologna, Italy

¹⁴Department of Oceanography, Kyungpook National University, Daegu, Republic of Korea

¹⁵University of Bristol, Bristol, United Kingdom

¹⁶National Research Council Post-Doc, Boulder, CO 80305

Global emissions of HCFC-141b, derived from measurements of atmospheric mole fractions, have been rising between 2017-2021 despite a fall in reported production and consumption. It is unclear whether the increase can be fully attributed to the known HCFC-141b bank. Limited evidence suggests that release rates of some HCFC-141b foam-containing appliances may increase after disposal in some regions of the world, but it is unclear whether this mechanism could account for the observed increase in global emissions and is not universally applicable. Additionally, extra vigilance is needed considering that the timing of the increase is coincident with a recent fall in emissions of CFC-11, the ozone depleting substance largely replaced by HCFC-141b, following a drop in unreported CFC-11 production. If there was a switch from unreported production of CFC-11 to HCFC-141b, this could, at least in part, be driving the increase in HCFC-141b emissions. Regional emissions estimates until 2020 for countries in north-western Europe, east Asia, the USA and Australia cannot explain the observed increase, which collectively account for around a third of global emissions in 2020.

Figure 1. Emissions of the ozone depleting substance HCFC-141b, derived using measurements from the NOAA (blue line) and AGAGE (orange shading) global networks. Emissions have been steadily increasing since 2017.