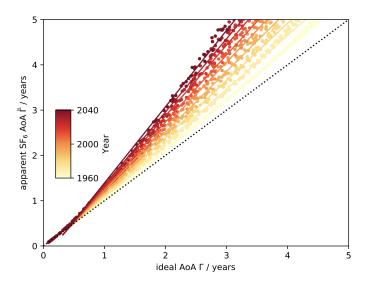
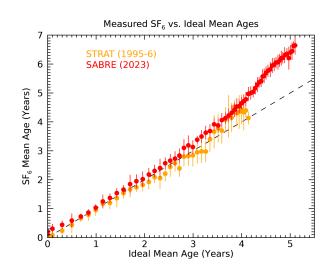
## The Evolution of SF<sub>6</sub> as an Age of Air Tracer


<u>E. Ray</u><sup>1</sup>, F.L. Moore<sup>2,3</sup>, E. Hintsa<sup>2</sup>, B.D. Hall<sup>3</sup>, G. Dutton<sup>2,3</sup>, D. Nance<sup>2,3</sup>, H. Garny<sup>4</sup>, B. Baier<sup>3</sup>, J. Li<sup>2,3</sup>, and C. Sweeney<sup>3</sup>

<sup>1</sup>NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305; 303-579-2958, E-mail: eric.ray@noaa.gov <sup>2</sup>Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309


<sup>3</sup>NOAA Global Monitoring Laboratory (GML), Boulder, CO 80305

<sup>4</sup>German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen-Wessling, Germany

The long lifetime and steady growth rate of sulfur hexafluoride (SF<sub>6</sub>) have made it a useful trace gas to estimate the age of air in the atmosphere. This estimation is complicated somewhat by the loss of SF<sub>6</sub> in the lower mesosphere due to free electron association. Mesospheric air with SF<sub>6</sub> loss is transported down into the stratosphere, especially in the winter polar vortices where mean age derived from SF<sub>6</sub> has been shown to be biased old due to the presence of air with substantial SF<sub>6</sub> loss. Recent theoretical and modeling work has shown that since the amount of SF<sub>6</sub> loss is proportional to the mixing ratio, which has grown larger by several times over the past few decades, the deviation of SF<sub>6</sub> mean ages from the ideal mean age is also expected to have grown larger over this time period. In this work we compare mean age estimates from aircraft campaign and balloon measurements of SF<sub>6</sub>, as well as other mean age tracers such as CO<sub>2</sub> and nitrous oxide (N<sub>2</sub>O), over the past several decades, including measurements from the recent DCOTTS and SABRE aircraft missions and AirCore flights. We use a newly developed correction technique to adjust observed SF<sub>6</sub> mean ages based on the year and latitude of the measurements to help evaluate the theoretical and model-based estimates of the evolution of SF<sub>6</sub> mean age biases over time.



**Figure 1.** Theoretical SF<sub>6</sub> mean age bias compared to idealized modeled mean ages colored by year from 1960-2040.



**Figure 2.** SF<sub>6</sub> mean ages from the STRAT (1995-6) and SABRE (2023) aircraft campaigns vs. an idealized mean age based on  $CO_2$  and  $N_2O$  measurements from many aircraft campaign measurements.