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Air Quality and Regional Studies

Russ Schnell

* The Global Monitoring Division primarily produces
long term measurements of the background
atmosphere.

* But, understanding shorter term data are required to
understand the longer term measurements and trends.

* Following are snippets on regional gas and aerosol
transport, tropospheric ozone, forest fire smoke, and
Arctic methane.
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Drivers of Air Quality Studies

* How is intercontinental transport influencing
air quality over the United States?

« How does the production and extraction of
fossil fuels affect air quality and background
concentrations?

« How does the cleansing capacity of the
atmosphere vary over time and is it sensitive
to anthropogenic emissions?

Following talks and posters will address
the above and related topics.

/ES / o i
NOAA/ESRL Global Monitoring Division Page AQ-1--2 @

Laboratory Review, April 3-5, 2013




Beijing Air Pollution Before and After
Cold Front Passage, February 27, 2013
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Dust and Air Pollution Flowing Out of Asia,
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CO From China May Have Increased in
the Past Decade
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Mauna Loa Aerosol Samples:
Y Passage of a Pollution/Dust Event,
April 1997

Air Pollution
Pushed by the
Front

Air Pollution
24 hour and Dust Mix
samples
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Annual Cycle of Dust and Air Pollution from
Asia at Mauna Loa Observatory
'Mauna Loa Clear Sky Solar Transmission
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Elevated Wintertime Ozone (>165 ppb)
and CH,, Uintah Basin, Utah
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Wintertime Ozone Formation Ouray, Utah
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Surface ozone
pollution in winter

TOXIC TRANSPORT
Microbial mercury uptake

GLACIER DYNAMICS
Transient acceleration

EARTHQUAKES AT DEPTH
Thermal runaway

Schnell and Oltmans et al. (2009), Rapid
photochemical production of ozone at
high concentrations in a rural site
during winter, Nature Geoscience,
DOI:10.1038/NGEO415.

First paper introducing this $ multi-
billion regulatory issue and spawning
large scale studies.

Petron and Frost et al. (2012),
Hydrocarbon emissions
characterization in the Colorado Front
Range- a pilot study, Jour. Geophys.
Res., d0i:10.1029/2011JD016360.

First paper showing that gas fields leak
~4% of methane. Recent research in
Utah shows ~ 9% leakage, possibly
negating the climate benefits of
switching from coal to CH,
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Alaska/Canada Forest
_Fires, 30 June 2004
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Smoke Event, Barrow, 2-3 July 2004
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Cherskiy, Russia =

GMD Tundra CH,
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CH, Measurements, Cherskiy, Russia
2400

No Evidence yet for Large
Permafrost Methane Releases
in the Cherskiy region.
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Bottom Line

Regional atmospheric measurements
(months to decades)
are crucial for understanding

Long term measurement trends
(decades to centuries).

Following Presentations:
Samuel Oltmans - Tropospheric Ozone
John Augustine - Aerosol Optical Depth
Gabrielle Petron - VOCs from Gas and Oil Fields
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Air Quality: Tropospheric Ozone
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Long Term Changes
and
Regional Influences

Sam Oltmans
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Tropospheric Ozone: What are the issues?

(Ozone Vertical Profie at Hilo, Hawall
BApr, 2004 2317 GMT
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altitudes.
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Impacts
— climate forcing

— air quality
— oxidizing (cleansing) capacity
Variability in space and time

requires a comprehensive
measurement strategy

— GMD operates 18 surface and
11 ozonesonde sites
Multiple sources

— Natural sources — stratosphere,
lightning, biogenic emissions

— Pollution sources — local and
reglonalproductlon, long-range
transpor

— makes isolating human impacts
complex

Sources vary with altitude

Changes are also altitude
dependent

Regionally representative
longer-term oiis are limited
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How does the NOAA/ESRL

Global Monitoring Division address these issues?

* Long-term ozone profile (30+ years) and
surface ozone (40+ years) measurements.

* Process studies — for example:
— Wintertime ozone formation
— Arctic boundary layer ozone depletion
— U.S. background ozone.

e Validation of satellite profiles from
ozonesondes.

* Longer-term observations involve broad
collaboration with U.S. and international
partners (e.g. NDACC, SHADOZ, WMO).

NOAA/ESRL Global Monitoring Division
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Long Term Tropospheric Ozone Changes

e Changes have strong interannual and regional
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variability. ﬁ4° N.H
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e At mid latitudes of the N.H. ozone increased ‘;30
into the 1990s. 2 20
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Three long term ozonesonde records in
mid latitudes of the N.H. from three continents
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1990 2000 2010

Long term changes in surface ozone at
selected locations in the N.H. and S.H.
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Long Term Tropospheric Ozone Changes

* Mauna Loa is representative of free tro
* Influenced by long range transport but

pospheric ozone in the mid Pacific.
also by strong transport variability

from ENSO and decadal variations (Lin et al., 2013).
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Decadal Variability

Observatlons

WS 1981-1995
20 [11996-2010 ]

A e . . L an L .
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
70

GFDL AM3 Model |

60| B

f % ? %
;

T 1981-1995

so [C11996-2007

Jan JFeb\MarJ AprlMay‘Jun - Jul JAungep‘ Oct \chlDec

e Positive trends in the fall and winter,
which is the seasonal minimum in O,

¢ Amplified variability with no
significant trends in spring in the
recent 15 years Page AR2-S

Ozone Mixing Ratio (ppb)

Spring Arctic Ground Level Ozone Depletion:

Connection to Sea Ice Changes — Climate Change
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Fraction of hours with surface O, <10 ppb at Barrow in
March each year for 1973-2012 (Oltmans et al., 2012).
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Spring ground level ozone is strongly
depleted in the Arctic.

Caused by ice actived halogen reactions.
Accompanying mercury activation events.

Big increase in depletion events in March
because of change in sea ice character —
first year sea ice activates more halogens.

March 1987 March 2011

mid-March 1587 il -March 2011

N

Ice age in March 1987 (left)
and 2011 (right) - white is oldest ice (>9 yr)
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Wintertime Ozone Production
Associated with Oil and Gas

Exploration and Extraction Top of haze layer
* Dramatic wintertime ozone episodes first reported in
the Upper Green River Basin of Wyoming by Schnell
etal., 2009.

e Subsequently seen in the Uintah Basin of Utah.

e Snow cover, restricting topography, and intensive oil

Snow covered oil field in Wyoming.

and gas exploration and extraction are critical. Haze within the shallow inversion layer.
Wyoming - 2011 Utah - 2011
E 0 - =] B g 1 .
3 53 )_f A : 4
% _E W o [d uh. :. [\ ] ;
- g = ”j%;’ S
g 5 8. : 5
E b T r | 3
- 2 . ~@<r\f’ N7 'mJ'v' W V’ | *J" =
= X T T
7 R 1 v
Daily 8-hr max O, (ppb), 8-hr O, standard (75 ppb), ,
NOAA/ESRL Global Monitoring Division  temp,, and snow cover during winter in WY and UT. @
Laboratory Review, April 3-5, 2013 Page AR2-7
Wintertime Ozone Production e bt e
ray and Blue Feather
Associated with Oil and Gas Exploration |_ oum
. E:n -=Blua Feathar
and Extraction — Utah 2013 2w
‘;, 80
Tethered ozonesonde Z e0
¢ at Fantasy Canyon . n
Profiles from 5 20
tethered balloon PP POPPP DD
ozonesondes show sanuary | February
2013
the development -~ ST ——
and vertical urface ozone (ppb) in Uintah Basin
for January 24 — February 7, 2013
structure from
rapid 1=10am. 2=11am. 3=noon 4=1pm.
photochemical 2 e~ L2230
ozone production. |z™
2 1850
£ i
Drilling and $ 1os0
Gas processing plant processing are < 1500 |
sources of ozone 150t .+ 4
precursors 80 ) 100 10 120 130
Ozone Mixing Ratio (ppb)

nitrogen oxides
( & ) Ozone (ppb) profiles in Uintah Basin

throughout the day (10 a.m. -8 p.m

NOAA/ESRL Global Monitoring Division on Feb. 5’ 2013
Laboratory Review, April 3-5, 2013 Page AR2-8




Wintertime Ozone Production Associated with Oil and Gas
Exploration and Extraction — Uintah Basin, Utah 2013

Aircraft flights in February 2013 give the first

. . Oil (red) &
large scale picture of ozone formation under bl
the conditions of winter ozone production. gas ( l,‘e)
wells in
Highest ozone found in areas of high the
methane (highly correlated with volatile Uintah
organic compounds) and high carbon Basin
monoxide (from drilling and compressors).
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Tropical Ozone Profiles
R The SHADOZ Ozonesonde network has been Fiji: Annual Cycle of Ozone Mixing Ratio (ppbv)
the linchpin of tropical tropospheric ozone
measurements for understanding processes,
satellite validation, and model improvement.

* These sites are also the backbone for regional
studies such as SEAC4RS.

* Long term collaboration between NOAA GMD
and NASA (Funding from Upper Atmosphere T e T T T
Program, Aura Validation, TOMS Science B e S L B
Team)

Altitu de (km)

SHADOZ Sites

Month

10 20 30 40 50 60 70 80 105 135 ppby

Contrast in tropospheric ozone

seasonal variation in the S.H.
I Pacific and Atlantic (Thompson

NOAA/ESRL Global Monitoring Division
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Intensive Ozonesonde Network Studies (IONS)

e Multiple campaigns using ozonesonde (IONS) =
Upcoming - SEACIONS (SEAR4RS)
e CALNEX (IONS2010) — Did daily sondes at 6 sites £
— ldentified multiple sources (Cooper et al., 2011) é : _
— GFDL AM3 model performed well (Lin et al., 2012) < .5
e Collaboration between GMD and NASA (Funding :

from Tropospheric Chemistry, Upper Atmosphere, 10 815 520 525 S 608 603 M4 @S
Aura Validation)

Cross section of daily ozone
A P S profiles at Trinidad Head, CA in

TRINIDAD HEAD: MAY 14

May and June 2010 during CALNEX
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Tropospheric Ozone: Summary

* GMD tropospheric ozone observations have been crucial in both
long-term (trends) and regional studies.

¢ Some Results:

— Tropospheric ozone is now flat or decreasing over much of the mid
latitude N.H. (East Asia the exception) likely due to precursor emission
reductions in North America and Europe.

— Changes in other regions probably not linked to emissions (interannual
changes such as ENSO and decadal circulation variations may play a role).

— Warming Arctic (switch from multi-year to first year ice) has significantly
altered ozone (and likely mercury) behavior.

— Significant impacts from oil and gas exploration activity on regional
ozone.

* Regional studies complement long term observations.

NOAA/ESRL Global Monitoring Division
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Aerosol Optical Depth Measurements
and Related Research

John A. Augustine
GMD Radiation Group
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Why measure Aerosol Optical Depth?

* Aerosols cool the surface; AOD helps to quantify that effect
* Monitor long-term trends in aerosol loading, air quality
* How well do weather and climate models handle aerosols?

 How do aerosols affect the solar ,
energy resource? '

* Satellite validation:

v’ Satellite-derived AOD over Bl
land (MODIS, MISR) o

v How do aerosols impact satellite-derived surface irradiance?

NOAA/ESRL Global Monitoring Division @
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What is Aerosol optical depth?

A measure of the extinction of radiation from the sun’s
beam by aerosols

|0/1
Top of Atmosphere

In(ll—‘) =-mXz,

04

m = air mass

| Earth’s surface

/////////////////////

’C}\,aerosol — ZT}\, - T}\,molecular - T}\,ozone
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What is Aerosol optical depth?

A maoaciira nf the avtinctinn of radiation from the sun’s
Typical AODg,,,, values: rosols

Clear, clean skies ~0.05
U.S. average ~0.14 |
visibility impacted (air quality) > ~0.2 o4

Top of Atmosphere

In(ll—”“) =-mXz,

04

m = air mass

| Earth’s surface

/////////////////////

’C}\,aerosol — Z’C}\, - T}\‘molecular - T}\,ozone
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Sunphotometers used to measure
Aerosol Optical Depth

MultiFilter Rotating Shadowband  Middleton SP02 Sunphotometer
Radiometer used at U.S. sites used at global sites
(SURFRAD Network)

NOAA/ESRL Global Monitoring Division
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AOD Climatologies
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Testing the Lunar-photometer at Mauna Loa for
use in the Arctic

NOAA/ESRL Global Monitoring Division
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U.S. AOD Climatology
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Network-wide decrease in U.S. AOD from
1997 to 2009
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Augustine, J. A. and E. G. Dutton, 2013, J. Geophys. Res., 118, 10.1029/2012JD018551.
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How did the measured decrease in U.S. AOD
affect surface radiation?

15
+10 Wm-2 of solar brightening over the U.S. over 16 years,

or +6.6 Wm2/decade

Shortwave-down annual anomaly (Wm-2)

\
\
\
\
|
:"' ¥
\\\: V = National average SW-down
] — — — Individual stations SW-down
'15 T T T T T T T
1996 1998 2000 2002 2004 2006 2008 2010

NOAA/ESRL Global Monitoring Division
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Augustine, J. A. and E. G. Dutton, 2013, J. Geophys. Res.,118, 10.1029/2012)D018551
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How did the measured decrease in U.S. AOD

affect surface radiation?

15

10 +

+10 Wm-2 of solar brightening over the U.S. over 16 years, N
or +6.6 Wm2/decade /\
Europe: +3 to 4 Wm2/decade \

Japan: +8 Wm/decade FANYI 'S ‘\\

4 r\
China: +4 Wm/decade N/ I"\‘ AR
\

5 - India: -9 Wm/decade

-10 N

Shortwave-down annual anomaly (Wm-2)
o
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v = National average SW-down
— — — Individual stations SW-down
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Augustine, J. A. and E. G. Dutton, 2013, J. Geophys. Res., 118, 10.1029/2012JD018551
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How did the measured decrease in U.S. AOD

affect surface radiation?

15

[y
o

Declining AOD accounted for only +0.82 Wm of the Y
documented +10 Wm2 of solar brightening
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Radiative Forcing Efficiency (RFE)
of Boreal wildfire smoke

RFE = ANetRad/unit AODgy50m flsolar zenith angle, sfc.
albedo)
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Useful for validating model performance for boreal wildfire smoke conditions
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GMD’s AOD used by NASA for MODIS AOD validation

Impact of Aerosol Input Source on All-Sky SW Flux at Surface (Desert Rock, NV)

550 nm Aerosol Optical Depth

MODIS Land (Seurce MODO4)

: - MATCH-Only AOD prior to
Auxiliary (MATCH or MODIS)
MFRSR Observation | 04/2006.

: - MATCH+Mod04 AOD after
04/2006.

ADT @ 550nm
=
-

nz | - MATCH-only AOD closer to
MFRSR obs.

0o

0100 o101 0102 0103 0104 0105 0106 0107 01A08 0109 0110 01A1 0112
Manth/Year

(Desert Rock, NV, SYN Grid Box)

MATCH+Mod04 ACD -
- Change in AOD source leads

to ~20 Wm-2 discontinuity in
all-sky SW downward flux at
SFC.

Delta SW Sfe DaWm-2

MATCH-Only AOD
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Courtesy of David Rutan, NASA Langley
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Summary

v" Aerosol optical depth is a quantitative measure/proxy for air quality

v AOD climatologies developed for all stations

v Collocated AOD and surface radiation budget data are rare, but useful

for research

v Small decreasing AOD trend from 1997 to 2009 had little impact on

solar brightening over the U.S.

v’ Parameterized the radiative forcing of boreal wildfire smoke

v" GMD’s coupled radiation and AOD data indispensible to NASA and

NOAA satellite validation
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Methane and Volatile Organic Compounds
Emissions from Oil and Gas Operations

Gabrielle Pétron
Global Monitoring Division
University of Colorado, CIRES

NOAA/ESRL Global Monitoring Division
Laboratory Review, April 3-5, 2013

Page AR-4-1 V

Natural Gas and Oil Systems
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Raw gas is composed
of 70-90% methane

> Distribution gas is

>90% methane

Examples of raw gas molar composition
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Fugitive emissions or leaks
of natural gas along the
production and supply
chain result in direct
emissions of CH, and VOCs
(ozone precursors).




Atmospheric Impacts from

Oil and Natural Gas Systems

Field measurements in the US suggest that

methane and VOC emissions are likely

under-estimated:
» 0Oil and gas production

— in TX, OK, KS: Katzenstein et al. 2003
2012, Karion et al.,

— in CO and UT: Pétron et al.,
submitted

» Natural gas distribution in cities
In Boston: Phillips et al., 2012
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In Washington DC: Jackson et al., on-going

Surface
enhancements
of alkanes and
alkylnitrates
in Texas &

- Oklahoma,
Katzenstein et
al., 2003

Methane leaks in Boston,

Phillips et al., 2012
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Atmospheric Impacts from

Oil and Natural Gas Systems

Uintah Basin, February 5, 2013 - Wintertime O, Study

Ozone Mixing Ratio at Fantasy Canyon, 2/5/2013
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e Emissions from oil and gas operations
can contribute to surface O; pollution ¥

— Wintertime: Utah & Wyoming, Schnell et
al., 2009, S. Oltmans and R. Schnell talks.

— Summertime: Colorado
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How well do we know emissions

from oil and gas systems? CH, example

NG systems emissions in two
versions of the US inventory
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In 2011 and 2013, the US EPA revised its methodology to

calculate CH4 emissions from natural gas systems. The
production (upstream) sector saw the largest changes.

NG field productionemissions in four versions of the inventory

TgEH,/yr?

US 2010 Total CH, source: 28-32 Tg

Petroleum systems: 1.5 Tg
Coal Mining: 3 Tg
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Can atmospheric measurements be used to assess

emissions from oil and gas basins?
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Can we detect methane emissions in the atmosphere?

Methane and VOC cloud

NOAA/ESRL Global Monitoring Division
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In-situ measurements and
discrete air samples are
collected by instrumented
van, tower or aircraft
upwind and downwind of
point or area sources.
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North American GHG and VOC
MEERE O ES

Tower, aircraft and van
flask sampling system CCGG MAGICC
<} €O, CH,N,OSF,COH,

GMD’s List of

VOCs measured in
Mobile flasks

Laboratory propane
n-butane
Multiple species can be used to i and n-pentane
attribute emissions of long-lived GHGs benzene,
such as carbon dioxide or methane. acetylene ” o :
2007-present HATS GC/MS
More species in a few 43 species
months

NOAA/ESRL Global Monitoring Division
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Intensive campaigns in Oil and Gas Basins

Map of unconventional oil and gas reservoirs
and dates of GMD campaigns Research Questions:
f o - : Emissions of methane and non-

methane hydrocarbons
9 Summertime ozone
Wintertime ozone

Wyoming 2008
Utah 2012,2013

Instrumented van

Colorado
2008-p resent Wind Doppler Lidar

NOAA CSD
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Denver-Julesburg Basin, Colorado

Boulder Atmospheric Observatory In-situ
3.44| @ Niwot Ridge Flasks

Methane (ppm)

39.8 - I Compressor Stations

& Processing Plants 120 130 140 150 160
A Feedio! -

ool Julian Day 2012
Landhils

©  Water Treatment

-106.0 -105.5 -105.0 -104.5 -104.0

Median mixing ratio
BAD middae data In-situ measurements in the DJB show a

40

W gadd grdd oosr

diurnal cycle in methane with night-time
levels elevated by hundreds of ppb to a
few ppm above background at BAO.
Methane at the surface is much higher at
night at the Platteville site, located in the
middle of the basin.
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Pétron et al., JGR, 2012
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Denver-Julesburg Basin, Colorado

s Colorado Northern Front Range
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In-situ measurements in the DJB show a
diurnal cycle in methane with night-time
levels elevated by hundreds of ppb to a

few ppm above background at BAO.
Methane at the surface is much higher at
night at the Platteville site, located in the
middle of the basin.
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BAO Tower: Multiple species flask analysis
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Uinta Basin - February 2012

13 flights with in-situ measurements and flask sampling

Uintah Basin Flight, February 7, 2012 Uintah Basin - February 2012

Aircraft discrete samples data
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Strong correlation between
methane, the light alkanes and

Permitted well

Oil and Gas production is the main activity in the Uintah Basin.

benzene in samples collected in
Multi-laboratory campaign coordinated by the Uintah Basin in 2012.

EPA region 8 and State of Utah

NOAA/ESRL Global Monitoring Division
Laboratory Review, April 3-5, 2013 Page AR-4-12




Mass-balance methane flux estimation

Uintah Basin Flight, February 3, 2012
- —

mass of CH, out of box mass of CH, into box
2100

Mey, = jIpCH4VndAout lJ’{j.pCH“\A/ndAﬁn -
cs cs

Hourly CH, leak estimated on that day is 8.8 +2.6% of
hourly averaged gas production for February 2012
(Karion et al., submitted).

VOC emissions in regulatory inventory are
underestimated by a factor of 2 (Pétron et al., in prep) : o 20 20 &

Path Length
NOAA/ESRL Global Monitoring Division a € g
Laboratory Review, April 3-5, 2013 Page AR-4-13

What do long-term CH, measurements show?

[ Global Averoges
177151
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Fossil Fuel

Data from the GMD measurement network Temperate North America, DJF
show that global methane is on the rise again B
(see E. Dlugokencky’s talk). 15| Optimized source

In 2002 the SGP Oklahoma site comes online uInitial guess constant
CT-CH, increases fossil fuel emissions in ®

North America after 2002 compared to the
prior (EDGAR 3.2 constant at year 2000 level).
CT-CH, suggests that the recent trend is due
in part to wetlands and in part to
anthropogenic emissions in temp. latitudes.

TaCH fyr

2000 2002 2004 2006 2008 2010 20
NOAA/ESRL Global Monitoring Division CarbonTraCker-CH4 w
Laboratory Review, April 3-5, 2013 L. Bruhwiler’s talk and in prep Page AR-4-14




US Inverse modeling results using GMD data

S. Miller et al., submitted | o _ USbudget
Evidence for a large fossil 35.11
e
fuel methane source over 324
- &
the south-central US 212342 TX/OK/L
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S. Miller et al. regional inverse
modeling study indicates that:

US EPA 2012 inventory 32.2%10
e Methane emissions in the US in
US EPA 2013 inventory  29.5%9 2007-2008 are underestimated in
the official inventory.
Miller et al. inversion 46.8%2.5 TX/OK/LA emissions are 2.5 to 3.1

(12 in TX/OK/LA)

times too low compared with
EDGAR inventory

NOAA/ESRL Global Monitoring Division
Laboratory Review, April 3-5, 2013

Concluding remarks
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1 GMD long-term measurements and participation in intensive campaigns provide

! unique independent information on emissions from natural and anthropogenic
sources, including methane and VOC emissions from oil and gas systems.




Natural Gas and Oil Systems

Fugitive emissions or leaks
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Recent boom in unconventional plays

Gas flares in N. Dakota fst E
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Ohyergaas
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; Shale Gas and Qil Wells
ueiley from "Drill Baby Drill"

..\ Map Composition 3/8/2013 by +at Post Carbon Institute
William Huston, Shaleshock Media
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Global Monitoring Division

Review Summary

Contents:

¢ 1 Presentation — Dr. James Butler



Summary

James Butler
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Data Products and Visualization

(www.esrl.noaa.gov/gmd/products)

Annual Greenhouse Gas Index

The AGGI index provides a point of comparison for
tracking annual changes in levels of atmospheric
greenhouse gases.

FTP Data Finder
Search for and download datasets available on the GMD
public FTP server.

Interactive Atmospheric Data Visualization
A data exploration tool for GMD measurements.

GLOBALVIEW

The GLOBALVIEW data products enhance the spatial
and temporal distribution of atmospheric observations of
CO2, CH4 and other related greenhouse gases.

Ozone and Water Vapor
View data of the South Pole Ozone hole, plus profiles of
ozone from Greenland, and water vapor from Boulder.

Solar Radiation
View plots of various types of surface solar and infrared
radiation measurements from around the globe.

Atmospheric Transport
View back trajectories from some of the global GMD
observations sites using the ESRL/GMD IADV web app.

Observation Sites
Information and maps of sites where GMD makes
measurements.

NOAA/ESRL Global Monitoring Division
Laboratory Review, April 3-5, 2013

Ozone Depleting Gas Index

The ODGl is an index that relates changes in
atmospheric amounts of ozone depleting gases and the
recovery of the stratospheric ozone layer.

Current Trends in CO,

View graphs and get data for the most recent CO2
atmospheric data at Mauna Loa, Hawaii and for global
averages.

Solar Calculator

Generate estimates for sunrise, sunset, solar noon and
the position of the sun in the sky for a desired location
and date.

Carbon Tracker

CarbonTracker is a tool to keep track of time dependent
emissions and uptake of atmospheric carbon dioxide
(C0O2), both natural and man made.

Trace Gases
View graphs from the CATS trace gas measurement
system.

Aerosols
Plots of measured aersol properties.

Calibrations of Reference Gases

NOAA ESRL GMD is the World Meteorological
Organization (WMO), Global Atmosphere Watch (GAW)
Central Calibration Laboratory (CCL) for CO2, CH4,
N20, SF8, and CO.

Station Meteorology

Most recent weather information from the GMD
observatories and a few other locations.

®




Observatory Research
Operations Groups GMD Network WMO Networks
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Priorities

By Capability
1. Nurture and Sustain
Long Term Observing

Networks
* Calibration and quality
control

High quality,
experienced, scientific
and technical staff

Observing site
operations

NOAA/ESRL Global Monitoring Division
Laboratory Review, April 3-5, 2013

By Theme
Climate Forcing
Ozone Depletion
(Background Air
Quality)
By Emerging Issue (?)
1. Climate Change
2. Long-Range Transport
3. Renewable Energy
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Questions?

NOAA Global Monitoring Division GMD Miission

e ... providing the best possible L a'cqwre, evaluate, and make
] ] ) available accurate, long-term records
information on atmospheric of atmospheric gases, aerosol
constituents that drive climate particles, and solar radiation in a
change, stratospheric ozone manner that allows the causes of

depletion, and baseline air quality. change to be understood.
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