

Theme 1

Tracking Greenhouse Gases and Understanding Carbon Cycle Feedbacks

Outline

Overview of GML's Capabilities and Context — Arlyn Andrews Diagnosing the Carbon Cycle and Understanding Carbon: Climate Feedback Mechanisms — Lei Hu Quantifying Anthropogenic Emissions — John Miller The Future of Observing and Analyzing GHGs at GML— Colm Sweeney

Q&A with Panel

Theme 1: Overview

Overview of GML's Greenhouse Gas Capabilities and Context

Arlyn Andrews

Question 1 - Diagnosing Earth's climate system, reducing uncertainties & addressing societal challenges Question 2 - GML's three pillars: Sustained Observations, Standards, Technological Innovation Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

GML is a world leader in GHG measurements and their interpretation

Measurements

- Global Greenhouse Gas Reference Network
- WMO Central Calibration Laboratory

Greenhouse gas data analysis and assimilation

- Tracking greenhouse gas trends
- CarbonTracker CO₂ and CH₄
- National estimates of GHG emissions

CarbonTracker

GML occupies a key position in the research \rightarrow operations continuum

- Transitioning existing research systems toward operations

 reliably deliver state-of-the-science data, products and services
- Ongoing improvement of process models via research partnerships

 improved climate projections

NOAA GML's GHG activities support US federal and international climate mitigation and adaptation efforts

NATIONAL STRATEGY TO ADVANCE AN INTEGRATED U.S. GREENHOUSE GAS MEASUREMENT, MONITORING, AND INFORMATION SYSTEM

GlobalChange.gov

U.S. Global Change Research Program

Climate.gov

SCIENCE & INFORMATION FOR A CLIMATE-SMART NATION

United Nations Framework Convention on Climate Change

PARIS2015

Vision: NOAA Greenhouse Gas Monitoring and Information Services to Build a Climate Ready Nation

New NOAA GHG Technical Team

Integrated Global Greenhouse Gas Information System

GLOBAL GREENHOUSE GAS WATCH (G3W)

U.S. Greenhouse Gas Center

Uniting Data and Technology to Empower Tomorrow's Climate Solutions

NOAA

NOAA's Global Greenhouse Gas Reference Network

- **Comprehensive, long-term, well-calibrated** atmospheric measurements of GHG mole fractions
- Site/variability-dependent measurement strategy
- GGGRN measurements anchor and complement satellite GHG products

Unique measurements per year: 145K (flask air) + 270K (hourly ABOs/towers/mountains) +600K (30 second aircraft in situ) ≈1 million

Tans et al 1990, Science, 1990: 2995 citations P Tans: 20,873 citing articles E Dlugokencky: 13,303 citing articles

Towards an International GHG Reference Network

- Regional programs are loosely coordinated under WMO Global Atmosphere Watch (GAW).
- New WMO Global Greenhouse Gas Watch aims to improve standardization, latency, address coverage gaps.

GGGRN elements: Multi-species analysis of air samples

- Common suite of rigorously calibrated laboratory analyzers → global consistency over decades
- Comprehensive suite of GHGs and related species
 → process understanding and source sector attribution

NOAA Global Monitoring Laboratory

- Major GHGs: CO₂, CH₄, N₂O
- Minor GHGs: CFCs, HCFCs, HFCs, SF₆ ("F-gases")
- Process tracers: Carbonyl Sulfide, CO, H₂, Hydrocarbons

Institute of Arctic and Alpine Research, University of Colorado

- Stable isotopes: δ ¹³C-CO₂, δ ¹⁸O-CO₂, δ ¹³C-CH₄, δ D-CH₄
- Radiocarbon: $\Delta^{14}CO_2$, $\Delta^{14}CH_4$

Scripps Institution of Oceanography

Long-term ocean uptake: O₂/N₂ & Ar/N₂

GGGRN elements: Enhanced resolution over the US

- Continuous monitoring from tall towers and high elevation sites.
- Multi-species vertical profile measurements (~300 profiles/yr).

Sweeney et al., 2015: 145 citations Andrews et al., 2013: 181 citations, 5100 downloads

- NOAA Sustained Atmospheric Observations (SAO) funding supports modernizing, maintenance.
- Opportunities exist for expanded partnerships with other US agency programs.

GGGRN elements: Regional aircraft in situ sampling

Addressing global coverage gaps over climate-sensitive regions

Repeat US intensive sampling

- ~100 profiles per circuit
 - \circ CO₂/CH₄/CO/H₂O
 - Winds
 - Flasks
- 6 circuits per year

Supported by NOAA SAO funding

GGGRN elements: Colorado surface-to-stratosphere supersite

AirCore: Karion et al, 2010, 142 Citations

- Direct evaluation of satellite retrievals
- High-definition profiles \rightarrow strong constraints on transport and process models
- Supported by NOAA SAO & Earth Radiation Budget with help from NESDIS, NASA
- Opportunity: add boundary layer sensors, ceilometer, ozone, additional species

GGGRN products: Tracking global distributions and trends

- Effective radiative forcing from anthropogenic GHGs now 1.5 times 1990 level.
- CO₂ dominates and accounts for majority of the trend.

Tracking regional GHG emissions and removals

Overview of NOAA CarbonTracker capabilities and context

Quasi-operational products

Global

- CO₂, CH₄
- (N₂O aspirational)

National/North America

- Fluorinated (F) gases
- (CO₂, CH₄, N₂O demonstrated)

Target: Annual updates/quarterly interim (SAO \$)

- CarbonTracker is a candidate core contribution to US GHGMMIS and WMO G3W
- Opportunities to strengthen X-NOAA connections
 - Ocean and satellite products AOML/PMEL, NESDIS
 - Improve underlying process/transport models and emissions estimates NWS, GFDL/ARL/CSL/GSL/PSL
 - Leverage operational capabilities NWS, NESDIS

Current CarbonTracker and F-gas products developed with support from NOAA CPO & SAO, NASA.

Theme 1

Diagnosing the Natural Carbon Cycle and Understanding Carbon:Climate Feedback Mechanisms

Lei Hu

Question 1 - Diagnosing Earth's climate system, reducing uncertainties & addressing societal challenges Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

Inadequate understanding of carbon cycle feedbacks – a substantial challenge for climate mitigation

How can Carbon Dioxide Removal and other mitigation efforts succeed when fundamental understanding of "natural" carbon fluxes is lacking?

Long-term global observations: natural systems have reduced the climate impact of fossil fuel CO_2 by ~50%

CarbonTracker provides optimized estimates of regional emissions and removals

1° x 1 ° land flux: 2001-2020 mean

- 22 releases since 2007
- 1059 citations!
- Used in >821 individual research studies
- Supports NASA OCO-2 MIP, Global Carbon Budget, US GHG Center

Tropical land flux anomalies

CarbonTracker-Lagrange: US ecosystem uptake is strongly enhanced during El Niño

- Extratropical ecosystems (such as in the U.S.) have opposite ENSO response versus global/tropical
- Behavior is lacking in current ecosystem models \rightarrow missing/underestimated mechanisms

CarbonTracker-Lagrange developed with support from NOAA CPO & NASA.

CarbonTracker-Lagrange: US ecosystem uptake is strongly enhanced during El Niño

Mitigation impacts:

- Need to track US emissions reductions superimposed on highly variable ecosystem fluxes.
- US ecosystem uptake likely to change as climate continues to warm.

Multi-species measurements provide a powerful constraint on ecosystem processes: COS enables quantification of photosynthesis

NOAA COS-based photosynthesis

Hu et al., 2021, PNAS: 31 Citations

Satellite remote-sensing based photosynthesis proxies

Montzka et al., 2007, JGR First atmospheric evidence of COS constraining photosynthesis

Opportunities:

- Use COS measurements to estimate photosynthesis for additional ecosystems
- Partner with NESDIS to develop new NIRv products

Methods developed with support from NOAA CPO & NASA ABoVE

Aircraft profiles strongly constrain estimates of Southern Ocean uptake

Opportunity: Work with NOAA OAR and Scripps partners to further develop observational constraints on ocean flux estimates.

Science	LETTER nature	LETTER nature			
Observational Constraints on the Global Atmospheric CO ₂ Budget	Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years	Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements			
Pieter P. Tans, Inez Y. Fung, Taro Takahashi	A. P. Ballantyne ¹ †, C. B. Alden ² , J. B. Miller ^{3,4} , P. P. Tans ⁴ & J. W. C. White ^{3,2}	L. C. Starger, S. Freitzer, R. Brazi, L. O. Anderson, H. Rochar, I. Grazov, O. L. Phillips, a J. Loyden, N. S. C. Ontext, V. F. Konger, S. Freitzer, R. Brazi, L. O. Anderson, H. Rochar, Grazov, O. L. Phillips, a J. Loyden, B. Starger, S. Starg			

GML's unique observations and modeling capabilities provide:

kev insights into underlying processes driving changes in natural

changes on global, national and regional scales (long-term, global, 4D)

the foundation for quantifying natural carbon fluxes and their

RESEARCH

CARBON CYCLE

Strong Southern Ocean car airborne observations

Matthew C. Long^{1s}, Britton B. Stephens³, Kathryn Eric A. Kort⁵, Eric J. Morgan⁴, Jonathan D. Bent^{1,4}, Róisín Commane⁶, Bruce C. Daube⁹, Paul B. Krum Prabir Patar³², Wouter Peters¹¹²³, Michel Ramonet Pieter Tans³, Steven C. Wofsy^{9,15}

PN	NAS	Proceedings of the National Academy of Scle of the United States of An	carbon cycle (multi-species)							
Home	Home Articles Front Matter New CO2 seasonal Lei Huthing, Stephen A. Mont RESEARCH ARTICLE			explain high-latitude atmospheric cycle amplification &#, Akya Kaushik^{a,}, Atyn E. Andrews^b, Coln Sweensy¹, John Miller¹, & Elliot Campbell¹, Yodi P. Shiga², Pieter Tans⁶, M. Carolina Siko³, Xah²¹, K. K. Tonina¹, Bradlyr Halt, Base Yimor¹, Janes W. (Bishs⁶),</th><th colspan=2>CO₂ uptake by plants during droughts continental scale</th><th>ghts at a</th><th colspan=2>t a Challen 2011: This was a dualitied awar Model Development</th></tr><tr><td>Large the Lo</td><td colspan=2>Large and seasonally varying biospheric CO_2 fluxes in the Los Angeles megacity revealed by atmospheric</td><td colspan=2>Amore Phase Block 99 1021-1077 999</td><td colspan=3>Henrique F. Duarte', Ingrid T. van der Laan-Luijkx', Michiel K. van der Molen', M Kevin Schaefer', Pier Luigi Vidale©', Anne Verheef'', David Wärlind', Dan Zhu Bruce Vaughn' and James W. C. White''</td><td colspan=3>tko (CTDAS-C13 v1.0): retrieving information on land-atmospher PH exchange processes Trar R. set of Vald^{1,3,3} Jan Res R. Mille², Midda K. van der Malen¹, Peter P. Tans², Breer H. Vingha⁴, Janse W. C. White⁴, Kevin Schaefer⁴, and Wonter Peters^{1,6}</td></tr><tr><td>John E Vineet Ya</td><td>Carbon B. Miller, @ Sc adav, @ Sally N</td><td>Arctic Climate Change (J Melton, The Arctic Carbon Climate</td><td>Section Editor) Open Access Published: 0 Cycle and Its Response t</td><td>2 February 2021 o Changing</td><td>Mexicolide Important Control (Control (Contro) (Control (Contro) (Contro) (Contro) (</td><td>Chemistry and Physics</td><td>Research article</td><td>ature limate chang</td><td>C Interview</td><td>LETTERS org/10.1038/s41558-020-0724-z</td></tr><tr><th></th><th></th><th>Lori Bruhwiler , Frans-Jan W. Pa Current Climate Change Reports 4897 Accesses 11 Citations </th><th>armentier, Patrick Crill, Mark Leonard & Paul I. 7, 14–34 (2021) <u>Cite this article</u> 31 Altmetric <u>Metrics</u></th><th>Palmer</th><th>Estimating emission: with atmospheric me and δ^{13}C Sourish Base¹², Xin Lan¹⁴, Edward Muşekend Lori Brahaller¹², Xina Udi, ¹ piker E. Tank, Fi Jaroban Neck¹⁰, Mohli Sasakara¹¹, Shin</th><th>s of methane consistent asurements of methane c of methane y¹, Spin Mickel¹, Stefan Schwiczla², John B. Miller⁴, ancesso Apadula¹, Luciaux V. Gatt⁴, Armin Jordan², Miorimot¹⁰, Tanan Diefa¹⁰, Hayeman Lei⁴¹,</th><th>Re m You Tull</th><th>educed ne ethane ox mi Oh®¹, Qianlai Z is C. Onstott⁴, Dav</th><th>et methane emissions due t kidation in a warmer Arctic Inuago¹¹³⁵, Licheng Liv', Lisa R. Welp⁰¹⁴, Maggie G Id Medvigg¹⁵, Lori Bruhwiler', Edward J. Diugekencky</th><th>o microbial Y. Lau^{4,9}, ⁶, Gustaf Hugelius [©]7,</th></tr></tbody></table>						

n .

Quantifying Anthropogenic Emissions

John Miller

Question 1 - Diagnosing Earth's climate system, reducing uncertainties & addressing societal challenges Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

GML's measurements enhance understanding of GHG emissions and removals, providing information needed to:

- Track progress toward US Paris Accord Nationally Determined Contribution (NDC)
- Support US efforts to create a GHG Measurement, Monitoring and Information System to assess mitigation

GML provides societally-relevant emissions calculations:

- High-warming-potential industrial ("F-gas") emissions already used by EPA/UNFCCC
 Questions 1 and 4
- CO₂ emissions and removals advanced prototypes Questions 1 and 4
- Understanding global CH₄ trends advanced prototypes Questions 1 and 4

Atmospheric measurements complement traditional inventory methods

• Independent "top-down" constraints on national and regional emissions

 \rightarrow Resolution depends on the density of observations

- "Trust but verify" improve confidence in Nationally Determined Contributions
- Potential for low latency
 - → More rapidly assess mitigation efforts (WMO G3W target is 1 month)

- → EPA improves US national GHG inventory using GML top-down emissions estimates.
- → GML benefits from greater understanding of mechanisms by working with inventory community.

Tracking high-warming fluorinated (F) gas emissions

- F-gases comprise about 5% of US GHG emissions as CO₂-equivalents
- F-gases are regulated by the EPA under the "AIM" act; phase-downs are underway

Top-down tracking of fossil fuel CO₂ emissions using radiocarbon (¹⁴C)

 Fossil fuel emissions contain no radiocarbon (half life ~6000 years)

> \rightarrow direct constraint on estimates of fossil fuel emissions

 Currently 1100 ¹⁴C measurements per year; SAO funding → 1500 per year

Methods developed with support from NOAA/CPO

Demonstrated capability for US fossil fuel CO_2 emissions tracking via $\Delta^{14}CO_2$ assimilation

- Radiocarbon shifts first guess higher, especially summer air conditioning peak
- Strong consistency with Vulcan except 2013 (lower data density)

N. Islam et al., in prep Vulcan Inventory: Gurney et al., in prep

Methods developed with support from NOAA/CPO

Demonstrated capability for US fossil fuel CO_2 emissions tracking via $\Delta^{14}CO_2$ assimilation

- Trend is similar to EPA: coal to gas transition
- Our estimate is ~10% higher
- More measurements → lower uncertainty and subnational resolution
- Opportunity to partner with University of Colorado for atmospheric radiocarbon facility

US Annual Emissions

Islam et al., in prep

CH₄ isotope measurements show that the recent increase of global atmospheric CH₄ is not driven by fossil emissions

Lan et al., 2021, GBC: 33 citations; Basu et al., 2022, ACP: 50 citations; Michel et al., 2024, PNAS (in press)

Key question: Wetland vs. agricultural partitioning?

Quantifying anthropogenic GHG emissions

Existing

• F-gases — Routine delivery of global, national, and regional emissions at annual and monthly scales; helping to inform EPA inventory

Future

Routine atmosphere-based estimates of:

- CO₂
 - Land sector sinks
 - Fossil CO₂ emissions
- CH₄ Global-scale and national-scale methane fossil fluxes
- N₂O National-scale N₂O emissions

Consistent Facility ↔ Regional emissions estimates (NOAA CSL/ARL/NESDIS, NIST)

The Future of Observing & Analyzing GHGs at GML

Colm Sweeney

Question 2 - Sustained observations, technology innovation

Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

Challenges

- The global observing system is insufficient to reliably quantify uncertainties and biases in reported GHG emissions and removals.
- We still lack fundamental understanding of how natural uptake/emissions of greenhouse gases will respond to climate change.

Solutions

- Enhance observing capabilities over all scales leveraging new platforms and instrumentation.
- Further develop data analysis systems to take advantage of diverse datasets spanning multiple scales and advance process understanding.
- Utilize what we learn from observations to inform climate projections.

Tracking GHG emissions and removals

- Measurement system upgrades
- Addressing coverage gaps
- New platforms
- Collaborations

Leveraging new platforms

NOAA and United Airlines partner to measure greenhouse gases, pollutants with high-tech flight instruments

Share: 🔰 🕇

Commercial aircraft

- Mid-range aircraft
- Up to 5 cities a day
- 8 profiles a day → ~2000/yr
- CO₂, CO, CH₄, H₂O
- Sampling large metro areas where emissions are highest

AirCore – Direct evaluation of satellite retrievals

Baier et al. in prep

- AirCore profiles are uniquely valuable for retrieval evaluation.
- Timing flights coincident with overpasses extremely challenging.
- Opportunity: ground based remote sensing to link in situ and satellite

AirCore – High-altitude Operational Return Uncrewed System (HORUS)

- Low cost platform
- Calibrated profiles
- High-volume payload capacity (AirCore + ...)
- Enables surface-to-stratosphere sampling in data-poor regions (e.g. islands, remote areas)

Support from NOAA/UAS

Tracking GHG emissions and removals

- Atmospheric Transport
- Data diversity/volume
- Process understanding

Improving process models – an example

40

Tracking GHG emissions and removals

- Operationalize/Low-latency
- Consensus Estimates
- Improved Projections

CarbonTracker — Transition to sustained operations

5-year objectives

- Low-latency GHG tracking
 - → Robust workflow
 - → Annual releases/quarterly interim
- Harmonized products
 - → Regional \leftrightarrow global interoperability
 - → Links to facility/urban scale activities

Consensus flux estimates

- → Model Intercomparison
- → Reconcile discrepancies
- → Model improvements
- → Reduced uncertainty

NOAA SAO funding key deliverable

Low-latency operational

Summary:

- GML is a world leader in GHG measurements and their interpretation
- GML aims to advance the state of GHG science and support US and international climate mitigation efforts:
 - Innovative approaches to addressing observation coverage gaps
 - Creative analysis of data to advance process understanding
 - Interoperable, low-latency, state-of-the-science CarbonTracker products
 - X-NOAA and Interagency partnerships to implement a US GHG Measurement Monitoring and Information System

Supplementary Slides

CarbonTracker – Advancing the state of the science

- Characterizing and reducing uncertainty
 - → Implement CarbonTracker Testbed
 - → Improve metrics for performance benchmarking
 - → Optimize assimilation strategy (satellite, in situ, multispecies)
 - → Inform observing system design
- Reducing sensitivity to atmospheric transport errors
 - → Multiple state-of-the-science atmospheric models
 - → Engage with model developers
 - → Evaluate against meteorological and trace gas measurements
- Diagnosis → Process Understanding → Improved Projections
 - → Process model parameter optimization
 - \rightarrow Multispecies and multiscale observations for flux attribution

Leveraging diverse observations


```
Space: Facility ⇔Regional ⇔Global
```

• Leverage diverse observations to address stakeholder needs across facility:regional:global scales

➡ Decades

Fime: Hours

• Move beyond GHG accounting (diagnosis) to improve and directly constrain processes models (prognosis)

Next Generation GHG Information Services

- Leverage diverse observations to address stakeholder needs across facility:regional:global scales
- Incorporate coupled earth system models to represent biogeochemical processes hours:decades:centuries
- Move beyond GHG accounting (diagnosis) to improving processes understanding (prognosis)