

Theme 1

Tracking Greenhouse Gases and Understanding Carbon Cycle Feedbacks

Outline

• Overview of GML's Capabilities and Context — Arlyn Andrews • Diagnosing the Carbon Cycle and Understanding Carbon: Climate Feedback Mechanisms — Lei Hu • Quantifying Anthropogenic Emissions — John Miller • The Future of Observing and Analyzing GHGs at GML— Colm Sweeney

Q&A with Panel

Theme 1: Overview

Overview of GML's Greenhouse Gas Capabilities and Context

Arlyn Andrews

Question 1 - Diagnosing Earth's climate system, reducing uncertainties & addressing societal challenges Question 2 - GML's three pillars: Sustained Observations, Standards, Technological Innovation Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

GML is a world leader in GHG measurements and their interpretation

Measurements

- Global Greenhouse Gas Reference Network
- WMO Central Calibration Laboratory

Greenhouse gas data analysis and assimilation

- Tracking greenhouse gas trends
- CarbonTracker $CO₂$ and $CH₄$
- National estimates of GHG emissions

CarbonTracker

GML occupies a key position in the research → operations continuum

- → **reliably deliver state-of-the-science data, products and services** • Transitioning existing research systems toward operations
- Ongoing improvement of process models via research partnerships **→ improved climate projections**

NOAA GML's GHG activities support US federal and international climate mitigation and adaptation efforts

NATIONAL STRATEGY TO ADVANCE AN INTEGRATED U.S. GREENHOUSE GAS MEASUREMENT, **MONITORING, AND INFORMATION SYSTEM**

U.S. Greenhouse Gas Center

NOAA

Uniting Data and Technology to Empower Tomorrow's Climate Solutions

U.S. Global Change Research Program

Climate.gov

SCIENCE & INFORMATION FOR A CLIMATE-SMART NATION

United Nations Framework Convention on Climate Change

PARIS2015

Vision: NOAA Greenhouse Gas Monitoring and Information Services to Build a Climate Ready Nation

New NOAA GHG Technical Team

GLOBAL GREENHOUSE GAS WATCH (G3W)

NOAA's Global Greenhouse Gas Reference Network

- **Comprehensive, long-term, well-calibrated** atmospheric measurements of GHG mole fractions
- **Site/variability-dependent** measurement strategy
- GGGRN measurements **anchor and complement** satellite GHG products

Unique measurements per year: 145K (flask air) $+270K$ (hourly ABOs/towers/mountains) +600K (30 second aircraft in situ) ≈1 million

Tans et al 1990, Science, 1990: 2995 citations P Tans: 20,873 citing articles E Dlugokencky: 13,303 citing articles

Towards an International GHG Reference Network

- Regional programs are loosely coordinated under WMO Global Atmosphere Watch (GAW).
- New WMO Global Greenhouse Gas Watch aims to improve standardization, latency, address coverage gaps.

GGGRN elements: Multi-species analysis of air samples

- Common suite of rigorously calibrated laboratory analyzers \rightarrow global consistency over decades
- Comprehensive suite of GHGs and related species \rightarrow process understanding and source sector attribution

NOAA Global Monitoring Laboratory

- Major GHGs: $CO₂$, $CH₄$, N₂O
- Minor GHGs: CFCs, HCFCs, HFCs, $SF₆$ ("F-gases")
- Process tracers: Carbonyl Sulfide, CO, H_2 , Hydrocarbons

Institute of Arctic and Alpine Research, University of Colorado

- Stable isotopes: δ ¹³C-CO₂, δ ¹⁸O-CO₂, δ ¹³C-CH₄, δ D-CH₄
- Radiocarbon: $Δ^{14}CO_2$, $Δ^{14}CH_4$

Scripps Institution of Oceanography

• Long-term ocean uptake: O_2/N_2 & Ar/N₂

GGGRN elements: Enhanced resolution over the US

- Continuous monitoring from tall towers and high elevation sites.
- Multi-species vertical profile measurements (~300 profiles/yr).

Sweeney et al., 2015: 145 citations Andrews et al., 2013: 181 citations, 5100 downloads

- NOAA Sustained Atmospheric Observations (SAO) funding supports modernizing, maintenance.
- Opportunities exist for expanded partnerships with other US agency programs.

GGGRN elements: Regional aircraft in situ sampling

Addressing global coverage gaps over climate-sensitive regions

Repeat US intensive sampling

- ~100 profiles per circuit
	- \circ CO₂/CH₄/CO/H₂O
	- **Winds**
	- Flasks
- 6 circuits per year

Supported by NOAA SAO funding

GGGRN elements: Colorado surface-to-stratosphere supersite

AirCore: Karion et al, 2010, 142 Citations

- Direct evaluation of satellite retrievals
- High-definition profiles \rightarrow strong constraints on transport and process models
- Supported by NOAA SAO & Earth Radiation Budget with help from NESDIS, NASA
- Opportunity: add boundary layer sensors, ceilometer, ozone, additional species

GGGRN products: Tracking global distributions and trends

- Effective radiative forcing from anthropogenic GHGs now 1.5 times 1990 level.
- CO₂ dominates and accounts for majority of the trend.

Tracking regional GHG emissions and removals

Overview of NOAA CarbonTracker capabilities and context

Quasi-operational products

Global

- $CO₂$, $CH₄$
- $(N_2O -$ aspirational)

National/North America

- Fluorinated (F) gases
- $(CO₂, CH₄, N₂O$ demonstrated)

Target: Annual updates/quarterly interim **(SAO \$)**

- CarbonTracker is a candidate core contribution to US GHGMMIS and WMO G3W
- **Opportunities** to strengthen X-NOAA connections
	- Ocean and satellite products AOML/PMEL, NESDIS
	- Improve underlying process/transport models and emissions estimates NWS, GFDL/ARL/CSL/GSL/PSL
	- Leverage operational capabilities NWS, NESDIS

Current CarbonTracker and F-gas products developed with support from NOAA CPO & SAO, NASA.

Diagnosing the Natural Carbon Cycle and Understanding Carbon:Climate Feedback Mechanisms

Lei Hu

Question 1 - Diagnosing Earth's climate system, reducing uncertainties & addressing societal challenges Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

Inadequate understanding of carbon cycle feedbacks a substantial challenge for climate mitigation

How can Carbon Dioxide Removal and other mitigation efforts succeed when fundamental understanding of "natural" carbon fluxes is lacking?

Long-term global observations: natural systems have reduced the climate impact of fossil fuel CO₂ by ~50%

CarbonTracker provides optimized estimates of regional emissions and removals

1° x 1 ° land flux: 2001-2020 mean

- 22 releases since 2007
- 1059 citations!
- Used in >821 individual research studies
- Supports NASA OCO-2 MIP, Global Carbon Budget, US GHG Center

Tropical land flux anomalies

CarbonTracker-Lagrange: US ecosystem uptake is strongly enhanced during El Niño

- Extratropical ecosystems (such as in the U.S.) have opposite ENSO response versus global/tropical
- Behavior is lacking in current ecosystem models \rightarrow missing/underestimated mechanisms

CarbonTracker-Lagrange developed with support from NOAA CPO & NASA.

CarbonTracker-Lagrange: US ecosystem uptake is strongly enhanced during El Niño

Mitigation impacts:

- Need to track US emissions reductions superimposed on highly variable ecosystem fluxes.
-

Multi-species measurements provide a powerful constraint on ecosystem processes: COS enables quantification of photosynthesis

NOAA COS-based photosynthesis

Hu et al., 2021, PNAS: 31 Citations

Satellite remote-sensing based photosynthesis proxies

Opportunities:

- Use COS measurements to estimate photosynthesis for additional ecosystems
	- Partner with NESDIS to develop new NIRv products

Methods developed with support from NOAA CPO & NASA ABoVE

Montzka et al., 2007, JGR

First atmospheric evidence of COS constraining photosynthesis

Aircraft profiles strongly constrain estimates of Southern Ocean uptake

GML Science Review | 21-23 October 2024

SOCCOM

 $(only -4 _uatm)$

2015-17

GML's unique observations and modeling capabilities provide:

changes on global, national and regional scales (long-term, global, 4D)

Ludovica D'Imperio⁸ and Bo Elberling^{®8}

• **the foundation for quantifying natural carbon fluxes and their**

RESEARCH CARRON CYCLE

Strong Southern Ocean car airborne observations

Matthew C. Long^{1*}, Britton B. Stephens¹, Kathryn I Eric A. Kort⁵, Eric J. Morgan⁴, Jonathan D. Bent¹ Róisín Commane⁸, Bruce C. Daube⁹, Paul B. Krum Prabir Patra¹², Wouter Peters^{11,13}, Michel Ramone Pieter Tans³, Steven C. Wofsv^{9,15}

```
• key insights into underlying processes driving changes in natural 
                                                                                  carbon cycle (multi-species)
                                                                        and light help explain high-latitude atmospheric
                                                                                                                                                                                          CO<sub>2</sub> uptake by plants during droughts at a
                    Articles
                                     Front Matter
                                                                       CO<sub>2</sub> seasonal cycle amplification
                                                                                                                                                                                           continental scale
                                                                       Lei kiu-M-10, Stephan A. Montzke<sup>h,</sup> Aleya Kaushika<sup>ha</sup>, Arkyn E. Andrews<sup>ko</sup>, Coin Sweensy<sup>9,</sup> John Millar<sup>h</sup>, <sup>N</sup><br>Ian T. Baker<sup>i@</sup>, Scott Demingr<sup>6</sup>, Elliott Campbell<sup>a</sup>, Yoichi P. Shiga", Pieter Tans<sup>ko</sup>, M. Carolina S
RESEARCH ARTICLE
                                                                                                                                                                                           Wouter Peters®<sup>12*</sup>, Ivar R. van der Velde<sup>3,4</sup>, Erik van Schaik<sup>1</sup>, John B. Miller<sup>4</sup>, Philippe The CarbonTracker Data Assimilation System for CO<sub>2</sub> and \delta^{13}CHenrique F. Duarte<sup>6</sup>, Ingrid T. van der Laan-Luijkx<sup>1</sup>, Michiel K. van der Molen<sup>1</sup>, Marko (CTDAS-C13 v1.0): retrieving information on land-atmosphere
Large and seasonally varying biospheric CO<sub>2</sub> fluxes in
                                                                                                                                                                                           Kevin Schaefer<sup>8</sup>, Pier Luigi Vidale<sup>®</sup>, Anne Verhoef<sup>10</sup>, David Wårlind<sup>7</sup>, Dan Zhu<sup>®5</sup>, Pice exchange processes
                                                                                                                                                                                           Bruce Vaughn<sup>11</sup> and James W. C. White<sup>11</sup>
                                                                                                                                                                                                                                                                                        Ivar R. van der Velde<sup>1,2,3</sup>, John B. Miller<sup>2</sup>, Michiel K. van der Molen<sup>1</sup>, Pieter P. Tans<sup>2</sup>, Bruce H. Vaughn
the Los Angeles megacity revealed by atmospheric
                                                                                                                                                                                                                                                                                        James W. C. White<sup>4</sup>, Kevin Schaefer<sup>5</sup>, and Wouter Peters<sup>1</sup>
                                                                                                                                             Atmos Chem Phys. 22 15351-15377 2022
                                                                                                                                                                                                            Atmospheric
radiocarbon
                                                                                                                                            https://doi.org/10.5194/acp-22-15351-2022
                                                                                                                                                                                                                              EGU
                                                                                                                                                                                                              Chemistry
                                                                                                                                            @ Author(s) 2022. This work is distributed unde
                                                                                                                                                                                                                                                                             23
                             Arctic Climate Change (J Melton, Section Editor) | Open Access | Published: 02 February 2021
                                                                                                                                                                                                            and Physics
                                                                                                                                             the Creative Co
                                                                                                                                                         mmone Attribution 4 0 License
                                                                                                                                                                                                                                                                 nature
                                                                                                                                                                                                                                                                                                                                                    LETTERS
John B. Miller, B S
                            The Arctic Carbon Cycle and Its Response to Changing
                                                                                                                                                                                                                                                                climate change
                                                                                                                                                                                                                                                                                                                                     ttps://doi.org/10.1038/s41558-020-073
Vineet Yadav, C Sally
                             Climate
                                                                                                                                                                                                                                                              Reduced net methane emissions due to microbial
                             Lori Bruhwiler<sup>[2]</sup>, Frans-Jan W. Parmentier, Patrick Crill, Mark Leonard & Paul I. Palmer
                                                                                                                                                          Estimating emissions of methane consistent
                                                                                                                                                          with atmospheric measurements of methane
                                                                                                                                                                                                                                                              methane oxidation in a warmer Arctic
                             Current Climate Change Reports 7, 14-34 (2021) | Cite this article
                                                                                                                                                                           and \delta^{13}C of methane
                             4897 Accesses | 11 Citations | 31 Altmetric | Metrics
                                                                                                                                                 Sourish Basu<sup>12</sup>, Xin Lan<sup>3,4</sup>, Edward Dlugokencky<sup>4</sup>, Sylvia Michel<sup>5</sup>, Stefan Schwietzke<sup>6</sup>, John B. Miller<sup>4</sup>,
                                                                                                                                                                                                                                                              Youmi Oh <sup>1</sup>, Qianlai Zhuang <sup>1,35</sup>, Licheng Liu<sup>1</sup>, Lisa R. Welp<sup>12</sup>, Maggie C. Y. Lau<sup>4,9</sup>,
                                                                                                                                                  Lori Bruhwiler<sup>4</sup>, Youmi Oh<sup>4</sup>, Pieter P. Tans<sup>4</sup>, Francesco Apadula<sup>7</sup>, Luciana V, Gatti<sup>8</sup>, Armin Jordan<sup>9</sup>
                                                                                                                                                                                                                                                              Tullis C. Onstott<sup>4</sup>, David Medvigy<sup>®</sup>, Lori Bruhwiler<sup>6</sup>, Edward J. Dlugokencky<sup>6</sup>, Gustaf Hugelius<sup>®</sup>7,
                                                                                                                                                     Jaroslaw Necki<sup>10</sup>, Motoki Sasakawa<sup>11</sup>, Shinji Morimoto<sup>12</sup>, Tatiana Di Iorio<sup>13</sup>, Haeyoung Lee<sup>14</sup>
```
Jgor Arduini¹⁵, and Giovanni Manca¹

Quantifying Anthropogenic Emissions

John Miller

Question 1 - Diagnosing Earth's climate system, reducing uncertainties & addressing societal challenges Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

GML's measurements enhance understanding of GHG emissions and removals, providing information needed to:

- Track progress toward US Paris Accord Nationally Determined Contribution (NDC)
- Support US efforts to create a GHG Measurement, Monitoring and Information System to assess mitigation

GML provides societally-relevant emissions calculations:

- High-warming-potential industrial ("F-gas") emissions **already used by EPA/UNFCCC – Questions 1 and 4**
- CO₂ emissions and removals **advanced prototypes Questions 1 and 4**
- Understanding global CH₄ trends **advanced prototypes Questions 1 and 4**

Atmospheric measurements complement traditional inventory methods

• **Independent "top-down" constraints** on national and regional emissions

 \rightarrow Resolution depends on the density of observations

- **"Trust but verify"** improve confidence in Nationally Determined Contributions
- Potential for **low latency**
	- \rightarrow More rapidly assess mitigation efforts (WMO G3W target is 1 month)

Tracking high-warming fluorinated (F) gas emissions

- F-gases comprise about 5% of US GHG emissions as $CO₂$ -equivalents
- F-gases are regulated by the EPA under the "AIM" act; phase-downs are underway

Top-down tracking of fossil fuel CO₂ emissions using radiocarbon (¹⁴C)

contain no radiocarbon (half life $~6000$ years)

> \rightarrow direct constraint on estimates of fossil fuel emissions

• Currently 1100 14C measurements per year; SAO funding \rightarrow 1500 per year

Methods developed with support from NOAA/CPO

Demonstrated capability for US fossil fuel CO₂ emissions *tracking via* $Δ^{14}CO_2$ *assimilation*

- Radiocarbon shifts first guess higher, especially summer air conditioning peak
- Strong consistency with Vulcan except 2013 (lower data density)

N. Islam et al., in prep Vulcan Inventory: Gurney et al., in prep

> Methods developed with support from NOAA/CPO

Demonstrated capability for US fossil fuel CO₂ emissions *tracking via* $Δ^{14}CO_2$ *assimilation*

- Trend is similar to EPA: coal to gas transition
- Our estimate is $~10\%$ higher
- More measurements \rightarrow lower uncertainty and subnational resolution
- Opportunity to partner with University of Colorado for atmospheric radiocarbon facility

US Annual Emissions

Islam et al., in prep

CH4 isotope measurements show that the recent increase of global atmospheric CH4 is not driven by fossil emissions

Lan et al., 2021, GBC: 33 citations; Basu et al., 2022, ACP: 50 citations; Michel et al., 2024, PNAS (in press)

Key question: Wetland vs. agricultural partitioning?

Quantifying anthropogenic GHG emissions

Existing

• F-gases —Routine delivery of global, national, and regional emissions at annual and monthly scales; helping to inform EPA inventory

Future

Routine atmosphere-based estimates of:

- \cdot CO₂
	- Land sector sinks
	- Fossil CO₂ emissions
- \bullet CH₄ Global-scale and national-scale methane fossil fluxes
- N_2O —National-scale N_2O emissions

Consistent Facility ↔ Regional emissions estimates (NOAA CSL/ARL/NESDIS, NIST)

The Future of Observing & Analyzing GHGs at GML

Colm Sweeney

Question 2 - Sustained observations, technology innovation

Question 4 - Supporting the US GHG Measurement Monitoring and Information System (GHGMMIS)

Challenges

- **The global observing system is insufficient** to reliably quantify uncertainties and biases in reported GHG emissions and removals.
- We still **lack fundamental understanding of how natural uptake/emissions** of greenhouse gases will respond to climate change.

Solutions

- **Enhance observing capabilities over all scales** leveraging new platforms and instrumentation.
- **Further develop data analysis systems** to take advantage of diverse datasets spanning multiple scales and advance process understanding.
- **Utilize what we learn from observations** to inform climate projections.

Tracking GHG emissions and removals

- Measurement system upgrades
- Addressing coverage gaps
- **New platforms**
- **Collaborations**

Leveraging new platforms

NOAA and United Airlines partner to measure greenhouse gases, pollutants with high-tech flight instruments

Share: V f

Commercial aircraft

- Mid-range aircraft
- Up to 5 cities a day
- 8 profiles a day \rightarrow ~2000/yr
- $CO₂$, CO, CH₄, H₂O
- Sampling large metro areas where emissions are highest

AirCore – Direct evaluation of satellite retrievals

Baier et al. in prep

- AirCore profiles are uniquely valuable for retrieval evaluation.
- Timing flights coincident with overpasses extremely challenging.
- Opportunity: ground based remote sensing to link in situ and satellite

AirCore – High-altitude Operational Return Uncrewed System (HORUS)

- Low cost platform
- Calibrated profiles
- High-volume payload capacity (AirCore $+ ...$)
- Enables surface-to-stratosphere sampling in data-poor regions (e.g. islands, remote areas)

Support from NOAA/UAS

Tracking GHG emissions and removals

- Atmospheric Transport
- Data diversity/volume
- Process understanding

Improving process models — an example

Tracking GHG emissions and removals

- Operationalize/Low-latency
- **Consensus Estimates**
- **Improved Projections**

CarbonTracker — Transition to sustained operations

5-year objectives

- **Low-latency GHG tracking**
	- \rightarrow Robust workflow
	- \rightarrow Annual releases/quarterly interim
- **Harmonized products**
	- \rightarrow Regional \leftrightarrow global interoperability
	- \rightarrow Links to facility/urban scale activities

• **Consensus flux estimates**

- \rightarrow Model Intercomparison
- \rightarrow Reconcile discrepancies
- \rightarrow Model improvements
- Reduced uncertainty

NOAA SAO funding key deliverable

Low-latency operational

Summary:

- GML is a world leader in GHG measurements and their interpretation
- GML aims to advance the state of GHG science and support US and international climate mitigation efforts:
	- Innovative approaches to addressing observation coverage gaps
	- Creative analysis of data to advance process understanding
	- Interoperable, low-latency, state-of-the-science CarbonTracker products
	- X-NOAA and Interagency partnerships to implement a US GHG Measurement Monitoring and Information System

Supplementary Slides

CarbonTracker — Advancing the state of the science

- **Characterizing and reducing uncertainty**
	- → Implement CarbonTracker Testbed
	- \rightarrow Improve metrics for performance benchmarking
	- \rightarrow Optimize assimilation strategy (satellite, in situ, multispecies)
	- \rightarrow Inform observing system design
- **Reducing sensitivity to atmospheric transport errors**
	- \rightarrow Multiple state-of-the-science atmospheric models
	- \rightarrow Engage with model developers
	- \rightarrow Evaluate against meteorological and trace gas measurements
- **Diagnosis** à **Process Understanding** à **Improved Projections**
	- \rightarrow Process model parameter optimization
	- \rightarrow Multispecies and multiscale observations for flux attribution

Leveraging diverse observations


```
Space: Facility ↔ Regional ↔ Global
```
Leverage diverse observations to address stakeholder needs across facility:regional:global scales

A
Decades

ime: Hours

• Move beyond GHG accounting (diagnosis) to improve and directly constrain processes models (prognosis)

Next Generation GHG Information Services

- Leverage diverse observations to address stakeholder needs across facility:regional:global scales
- Incorporate coupled earth system models to represent biogeochemical processes hours: decades: centuries
- Move beyond GHG accounting (diagnosis) to improving processes understanding (prognosis)