GML Publications for 2022

Click on page icon to view abstract.

A
Asher, Elizabeth, Troy Thornberry, David W. Fahey, Allison McComiskey, Kenneth Carslaw, Sophie Grunau, Kai‐Lan Chang, Hagen Telg, Ping Chen and Ru‐Shan Gao, (2022), A Novel Network‐Based Approach to Determining Measurement Representation Error for Model Evaluation of Aerosol Microphysical Properties, Journal of Geophysical Research: Atmospheres, 127, 3, 10.1029/2021JD035485

Abstract

Atmospheric aerosol size and abundance influence radiative effects and climate change. To date, efforts to constrain global climate models' radiative forcing with in situ aerosol observations have been hamstrung by uncertainty. One source of error, the regional “representation error,” arises when accurate but sparse single-point measurements of atmospheric aerosol distributions are compared with a model value, assuming that the single-point measurement is representative of the model domain. The Portable Optical Particle Spectrometer network in the Southern Great Plains (POPSnet-SGP) campaign has demonstrated that a network of nearly autonomous aerosol instruments operating at ambient temperature and relative humidity (with low measurement error) may be used to quantify measurement representation error and investigate the factors introducing heterogeneity in aerosol distributions across a rural, continental background region. Measurements were made using Portable Optical Particle Spectrometer (POPS) instruments at several sites for five months across the Department of Energy's Aerosol Radiation Measurement Southern Great Plains (ARM-SGP) User Facility in the central USA. Measurement representation error decreased with longer averaging periods (20%–40% between 1 s and 1 day), varied between sites by 10%–20% for aerosol concentration 140–2,500 nm in diameter (N_140), and was higher for aerosols >400 nm in diameter (N_400). Our measurements also show the influence of local meteorology on aerosol surface area (A_140) and size distributions: A_140 is positively correlated with wind speed and relative humidity, negatively correlated with precipitation, and lower given westerly winds. We conclude that the POPSnet approach provides considerably more insight into the spatial variability in the aerosol population that can be used to constrain climate models than would be available from similar networks of PM 2.5 monitors.

B
Bernhard, Germar H., Richard L. McKenzie, Kathleen Lantz and Scott Stierle, (2022), Updated analysis of data from Palmer Station, Antarctica (64° S), and San Diego, California (32° N), confirms large effect of the Antarctic ozone hole on UV radiation, Photochemical & Photobiological Sciences, 10.1007/s43630-022-00178-3

Abstract

The status of the stratospheric ozone layer is assessed by a panel of experts every 4 years. Reports prepared by this panel include a section with common questions and answers (Q&A) about ozone depletion and related matters. Since 2002, this Q&A supplement has featured a plot comparing historical and current ultraviolet (UV) Index data from Palmer Station, Antarctica (64° S), with measurements at San Diego, California (32° N), and Barrow, Alaska (79° N). The assumptions in generating these plots are discussed and an updated version is presented. The revised plot uses additional data up to the year 2020 and the methods used to create it are better defined and substantiated compared to those used for the legacy plot. Differences between the old and new UV Index values are small (typically < 5%). Both versions illustrate that the ozone hole has led to a large increase in the UV Index at Palmer Station. Between mid-September and mid-November, the maximum UV Index at this site has more than doubled compared to the pre-ozone-hole era (i.e., prior to 1980). When Palmer Station was below the ozone hole in December 1998, an “extreme” UV Index of 14 was observed, exceeding the highest UV Index of 12 ever measured at San Diego despite the city’s subtropical latitude. Increases in the UV Index at Barrow and San Diego remain below 40% and 3%, respectively.

H
Hu, Lei, Stephen A. Montzka, Fred Moore, Eric Hintsa, Geoff Dutton, M. Carolina Siso, Kirk Thoning, Robert W. Portmann, Kathryn McKain, Colm Sweeney, Isaac Vimont, David Nance, Bradley Hall and Steven Wofsy, (2022), Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017, Atmospheric Chemistry and Physics, 22, 4, 2891-2907, 10.5194/acp-22-2891-2022

Abstract

Abstract. The detection of increasing global CFC-11 emissions after 2012 alerted society to a possible violation of the Montreal Protocol on Substances that Deplete the Ozone Layer (MP). This alert resulted in parties to the MP taking urgent actions. As a result, atmospheric measurements made in 2019 suggest a sharp decline in global CFC-11 emissions. Despite the success in the detection and mitigation of part of this problem, regions fully responsible for the recent global emission changes in CFC-11 have not yet been identified. Roughly two thirds (60 ± 40 %) of the emission increase between 2008–2012 and 2014–2017 and two thirds (60 ± 30 %) of the decline between 2014–2017 and 2019 were explained by regional emission changes in eastern mainland China. Here, we used atmospheric CFC-11 measurements made from two global aircraft surveys – the HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) in November 2009–September 2011 and the Atmospheric Tomography Mission (ATom) in August 2016–May 2018, in combination with the global CFC-11 measurements made by the US National Oceanic and Atmospheric Administration during these two periods – to derive global and regional emission changes in CFC-11. Our results suggest Asia accounted for the largest fractions of global CFC-11 emissions in both periods: 43 (37–52) % during November 2009–September 2011 and 57 (49–62) % during August 2016–May 2018. Asia was also primarily responsible for the emission increase between these two periods, accounting for 86 (59–115) % of the global CFC-11 emission rise between the two periods. Besides eastern mainland China, temperate western Asia and tropical Asia also contributed significantly to global CFC-11 emissions during both periods and likely to the global CFC-11 emission increase. The atmospheric observations further provide strong constraints on CFC-11 emissions from North America and Europe, suggesting that each of them accounted for 10 %–15 % of global CFC-11 emissions during the HIPPO period and smaller fractions in the ATom period. For South America, Africa, and Australia, the derived regional emissions had larger dependence on the prior assumptions of emissions and emission changes due to a lower sensitivity of the observations considered here to emissions from these regions. However, significant increases in CFC-11 emissions from southern hemispheric lands were not likely due to the observed increase of north-to-south interhemispheric gradients in atmospheric CFC-11 mole fractions from 2012–2017.

L
Langford, Andrew O., Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann and Li Zhang, (2022), The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS), Atmospheric Chemistry and Physics, 22, 3, 1707-1737, 10.5194/acp-22-1707-2022

Abstract

Abstract. The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) was conducted in May and June of 2017 to study the transport of ozone (O3) to Clark County, Nevada, a marginal non-attainment area in the southwestern United States (SWUS). This 6-week (20 May–30 June 2017) field campaign used lidar, ozonesonde, aircraft, and in situ measurements in conjunction with a variety of models to characterize the distribution of O3 and related species above southern Nevada and neighboring California and to probe the influence of stratospheric intrusions and wildfires as well as local, regional, and Asian pollution on surface O3 concentrations in the Las Vegas Valley (≈ 900 m above sea level, a.s.l.). In this paper, we describe the FAST-LVOS campaign and present case studies illustrating the influence of different transport processes on background O3 in Clark County and southern Nevada. The companion paper by Zhang et al. (2020) describes the use of the AM4 and GEOS-Chem global models to simulate the measurements and estimate the impacts of transported O3 on surface air quality across the greater southwestern US and Intermountain West. The FAST-LVOS measurements found elevated O3 layers above Las Vegas on more than 75 % (35 of 45) of the sample days and show that entrainment of these layers contributed to mean 8 h average regional background O3 concentrations of 50–55 parts per billion by volume (ppbv), or about 85–95 µg m−3. These high background concentrations constitute 70 %–80 % of the current US National Ambient Air Quality Standard (NAAQS) of 70 ppbv (≈ 120 µg m−3 at 900 m a.s.l.) for the daily maximum 8 h average (MDA8) and will make attainment of the more stringent standards of 60 or 65 ppbv currently being considered extremely difficult in the interior SWUS.

Lu, Xiao, Daniel J. Jacob, Haolin Wang, Joannes D. Maasakkers, Yuzhong Zhang, Tia R. Scarpelli, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Hannah Nesser, A. Anthony Bloom, Shuang Ma, John R. Worden, Shaojia Fan, Robert J. Parker, Hartmut Boesch, Ritesh Gautam, Deborah Gordon, Michael D. Moran, Frances Reuland, Claudia A. Octaviano Villasana and Arlyn Andrews, (2022), Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric observations, Atmospheric Chemistry and Physics, 22, 1, 395-418, 10.5194/acp-22-395-2022

Abstract

Abstract. We quantify methane emissions and their 2010–2017 trends by sector in the contiguous United States (CONUS), Canada, and Mexico by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric methane observations. The inversion uses as a prior estimate the national anthropogenic emission inventories for the three countries reported by the US Environmental Protection Agency (EPA), Environment and Climate Change Canada (ECCC), and the Instituto Nacional de Ecología y Cambio Climático (INECC) in Mexico to the United Nations Framework Convention on Climate Change (UNFCCC) and thus serves as an evaluation of these inventories in terms of their magnitudes and trends. Emissions are optimized with a Gaussian mixture model (GMM) at 0.5∘×0.625∘ resolution and for individual years. Optimization is done analytically using lognormal error forms. This yields closed-form statistics of error covariances and information content on the posterior (optimized) estimates, allows better representation of the high tail of the emission distribution, and enables construction of a large ensemble of inverse solutions using different observations and assumptions. We find that GOSAT and in situ observations are largely consistent and complementary in the optimization of methane emissions for North America. Mean 2010–2017 anthropogenic emissions from our base GOSAT + in situ inversion, with ranges from the inversion ensemble, are 36.9 (32.5–37.8) Tg a−1 for CONUS, 5.3 (3.6–5.7) Tg a−1 for Canada, and 6.0 (4.7–6.1) Tg a−1 for Mexico. These are higher than the most recent reported national inventories of 26.0 Tg a−1 for the US (EPA), 4.0 Tg a−1 for Canada (ECCC), and 5.0 Tg a−1 for Mexico (INECC). The correction in all three countries is largely driven by a factor of 2 underestimate in emissions from the oil sector with major contributions from the south-central US, western Canada, and southeastern Mexico. Total CONUS anthropogenic emissions in our inversion peak in 2014, in contrast to the EPA report of a steady decreasing trend over 2010–2017. This reflects offsetting effects of increasing emissions from the oil and landfill sectors, decreasing emissions from the gas sector, and flat emissions from the livestock and coal sectors. We find decreasing trends in Canadian and Mexican anthropogenic methane emissions over the 2010–2017 period, mainly driven by oil and gas emissions. Our best estimates of mean 2010–2017 wetland emissions are 8.4 (6.4–10.6) Tg a−1 for CONUS, 9.9 (7.8–12.0) Tg a−1 for Canada, and 0.6 (0.4–0.6) Tg a−1 for Mexico. Wetland emissions in CONUS show an increasing trend of +2.6 (+1.7 to +3.8)% a−1 over 2010–2017 correlated with precipitation.

M
Michalsky, Joseph J. and Peter W. Kiedron, (2022), Moderate spectral resolution solar irradiance measurements, aerosol optical depth, and solar transmission, from 360 to 1070 nm, using the refurbished rotating shadow band spectroradiometer (RSS), Atmospheric Measurement Techniques, 15, 2, 353-364, 10.5194/amt-15-353-2022

Abstract

Abstract. This paper reports on a third-generation rotating shadow band spectroradiometer (RSS) used to measure global and diffuse horizontal plus direct normal irradiances and transmissions at 1002 wavelengths between 360 and 1070 nm. The prism-dispersed spectral data are from the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in north-central Oklahoma (36.605∘ N, 97.486∘ W) and cover dates between August 2009 and February 2014. The refurbished RSS isolates the detector in a vacuum chamber with pressures near 10−7 torr. This prevents the deposition of outgassed vapors from the interior of the spectrometer shell on the cooled detector that affected the operation of the first commercial RSS. Methods for (1) ensuring the correct wavelength registration of the data and (2) deriving extraterrestrial responses over the entire spectrum, including throughout strong water vapor and oxygen bands, are described. The resulting data produced are archived as ARM data records and include cloud-screened aerosol optical depths, spectral irradiances and direct normal solar transmission, as well as normalized diffuse and global irradiances.

Miner, Kimberley R., Merritt R. Turetsky, Edward Malina, Annett Bartsch, Johanna Tamminen, A. David McGuire, Andreas Fix, Colm Sweeney, Clayton D. Elder and Charles E. Miller, (2022), Permafrost carbon emissions in a changing Arctic, Nature Reviews Earth & Environment, 3, 1, 55-67, 10.1038/s43017-021-00230-3

Abstract

Arctic permafrost stores nearly 1,700 billion metric tons of frozen and thawing carbon. Anthropogenic warming threatens to release an unknown quantity of this carbon to the atmosphere, influencing the climate in processes collectively known as the permafrost carbon feedback. In this Review, we discuss advances in tracking permafrost carbon dynamics, including mechanisms of abrupt thaw, instrumental observations of carbon release and model predictions of the permafrost carbon feedback. Abrupt thaw and thermokarst could emit a substantial amount of carbon to the atmosphere rapidly (days to years), mobilizing the deep legacy carbon sequestered in Yedoma. Carbon dioxide emissions are proportionally larger than other greenhouse gas emissions in the Arctic, but expansion of anoxic conditions within thawed permafrost and soils stands to increase the proportion of future methane emissions. Increasingly frequent wildfires in the Arctic will also lead to a notable but unpredictable carbon flux. More detailed monitoring though in situ, airborne and satellite observations will provide a deeper understanding of the Arctic s future role as a carbon source or sink, and the subsequent impact on the Earth system. Large stores of carbon could be released to the atmosphere from Arctic warming, driving permafrost thaw. This Review examines the processes that impact Arctic permafrost carbon emissions, how they might change in the future and ways to monitor and predict these changes.

N
Nicewonger, M. R., Eric S. Saltzman and S. A. Montzka, (2022), ENSO‐Driven Fires Cause Large Interannual Variability in the Naturally Emitted, Ozone‐Depleting Trace Gas CHBr, Geophysical Research Letters, 49, 3, 10.1029/2021GL094756

Abstract

Methyl bromide (CH3Br) is an ozone depleting trace gas that is now mainly emitted from natural sources. Roughly 80% of anthropogenic production of CH3Br was phased-out in response to the Montreal Protocol on Substances that Deplete the Ozone Layer beginning in 1999 and atmospheric levels of CH3Br have declined considerably since. Here we use surface measurements of CH3Br from NOAA's global air sampling network, along with a six-box atmosphere/ocean model to explore interannual variability in atmospheric CH3Br mole fractions. We find that CH3Br mole fractions are strongly correlated with the El Niño Southern Oscillation (ENSO) phenomenon, but variability in winds, sea surface temperature, and biological production during ENSO are unlikely to drive the observed changes in atmospheric CH3Br directly. Rather, the results indicate that ENSO-driven changes to biomass burning are an important cause of the observed interannual CH3Br variability.

O
Ouimette, James R., William C. Malm, Bret A. Schichtel, Patrick J. Sheridan, Elisabeth Andrews, John A. Ogren and W. Patrick Arnott, (2022), Evaluating the PurpleAir monitor as an aerosol light scattering instrument, Atmospheric Measurement Techniques, 15, 3, 655-676, 10.5194/amt-15-655-2022

Abstract

Abstract. The Plantower PMS5003 sensors (PMS) used in the PurpleAir monitor PA-II-SD configuration (PA-PMS) are equivalent to cell-reciprocal nephelometers using a 657 nm perpendicularly polarized light source that integrates light scattering from 18 to 166∘. Yearlong field data at the National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory (MLO) and Boulder Table Mountain (BOS) sites show that the 1 h average of the PA-PMS first size channel, labeled “> 0.3 µm” (“CH1”), is highly correlated with submicrometer aerosol scattering coefficients at the 550 and 700 nm wavelengths measured by the TSI 3563 integrating nephelometer, from 0.4 to 500 Mm−1. This corresponds to an hourly average submicrometer aerosol mass concentration of approximately 0.2 to 200 µg m−3. A physical–optical model of the PMS is developed to estimate light intensity on the photodiode, accounting for angular truncation of the volume scattering function as a function of particle size. The model predicts that the PMS response to particles > 0.3 µm decreases relative to an ideal nephelometer by about 75 % for particle diameters ≥ 1.0 µm. This is a result of using a laser that is polarized, the angular truncation of the scattered light, and particle losses (e.g., due to aspiration) before reaching the laser. It is shown that CH1 is linearly proportional to the model-predicted intensity of the light scattered by particles in the PMS laser to its photodiode over 4 orders of magnitude. This is consistent with CH1 being a measure of the scattering coefficient and not the particle number concentration or particulate matter concentration. The model predictions are consistent with data from published laboratory studies which evaluated the PMS against a variety of aerosols. Predictions are then compared with yearlong fine aerosol size distribution and scattering coefficient field data at the BOS site. Field data at BOS confirm the model prediction that the ratio of CH1 to the scattering coefficient would be highest for aerosols with median scattering diameters < 0.3 µm. The PMS detects aerosols smaller than 0.3 µm diameter in proportion to their contribution to the scattering coefficient. The results of this study indicate that the PMS is not an optical particle counter and that its six size fractions are not a meaningful representation of particle size distribution. The relationship between the PMS 1 h average CH1 and bsp1, the scattering coefficient in Mm−1 due to particles below 1 µm aerodynamic diameter, at wavelength 550 nm, is found to be bsp1 = 0.015 ± 2.07 × 10−5 × CH1, for relative humidity below 40 %. The coefficient of determination r2 is 0.97. This suggests that the low-cost and widely used PA monitors can be used to measure and predict the submicron aerosol light scattering coefficient in the mid-visible nearly as well as integrating nephelometers. The effectiveness of the PA-PMS to serve as a PM2.5 mass concentration monitor is due to both the sensor behaving like an imperfect integrating nephelometer and the mass scattering efficiency of ambient PM2.5 aerosols being roughly constant.

P
Petropavlovskikh, Irina, Koji Miyagawa, Audra McClure-Beegle, Bryan Johnson, Jeannette Wild, Susan Strahan, Krzysztof Wargan, Richard Querel, Lawrence Flynn, Eric Beach, Gerard Ancellet and Sophie Godin-Beekmann, (2022), Optimized Umkehr profile algorithm for ozone trend analyses, Atmospheric Measurement Techniques, 15, 6, 1849-1870, 10.5194/amt-15-1849-2022

Abstract

Abstract. The long-term record of Umkehr measurements from four NOAA Dobson spectrophotometers was reprocessed after updates to the instrument calibration procedures. In addition, a new data quality-control tool was developed for the Dobson automation software (WinDobson). This paper presents a comparison of Dobson Umkehr ozone profiles from NOAA ozone network stations – Boulder, the Haute-Provence Observatory (OHP), the Mauna Loa Observatory (MLO), Lauder – against several satellite records, including Aura Microwave Limb Sounder (MLS; ver. 4.2), and combined solar backscatter ultraviolet (SBUV) and Ozone Mapping and Profiler Suite (OMPS) records (NASA aggregated and NOAA cohesive datasets). A subset of satellite data is selected to match Dobson Umkehr observations at each station spatially (distance less than 200 km) and temporally (within 24 h). Umkehr Averaging kernels (AKs) are applied to vertically smooth all overpass satellite profiles prior to comparisons. The station Umkehr record consists of several instrumental records, which have different optical characterizations, and thus instrument-specific stray light contributes to the data processing errors and creates step changes in the record. This work evaluates the overall quality of Umkehr long-term measurements at NOAA ground-based stations and assesses the impact of the instrumental changes on the stability of the Umkehr ozone profile record. This paper describes a method designed to correct biases and discontinuities in the retrieved Umkehr profile that originate from the Dobson calibration process, repair, or optical realignment of the instrument. The Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) Global Modeling Initiative (M2GMI) and NASA Global Modeling Initiative chemistry transport model (GMI CTM) ozone profile model output matched to station location and date of observation is used to evaluate instrumental step changes in the Umkehr record. Homogenization of the Umkehr record and discussion of the apparent stray light error in retrieved ozone profiles are the focus of this paper. Homogenization of ground-based records is of great importance for studies of long-term ozone trends and climate change.

S
Saltzman, E. S., M. R. Nicewonger, S. A. Montzka and S. A. Yvon‐Lewis, (2022), A Post‐Phaseout Retrospective Reassessment of the Global Methyl Bromide Budget, Journal of Geophysical Research: Atmospheres, 127, 3, 10.1029/2021JD035567

Abstract

Methyl bromide is a stratospheric ozone-depleting substance with both natural and anthropogenic sources. The global budget of methyl bromide has never been fully understood as evidenced by the significant budget gap between the bottom-up source estimates and calculated atmospheric losses. Atmospheric methyl bromide levels have declined significantly since Phase-out under the Montreal Protocol began in 1999, and the atmosphere appears to have reached a new steady state during the past five years. Here, we reassess the global methyl bromide budget utilizing the 25-year record of atmospheric methyl bromide measurements from the National Oceanic and Atmospheric Administration Global Monitoring Laboratory global flask network and a zonal 6-box coupled global ocean/atmosphere model. Model inversions were used to estimate the total emissions required to account for the observed atmospheric methyl bromide levels. From 1995 to 2019, global land-based emissions (natural and anthropogenic) declined from about 120 to 85 Gg y−1 and net ocean emissions increased from −5 to +5 Gg y−1. There remains an imbalance between the bottom-up estimates of terrestrial sources and the inversion result. Based on the timing, magnitude, and spatial distribution of the imbalance we partition it into (a) a persistent or time invariant source located primarily in the tropics, and (b) a smaller time-varying component that scales with the anthropogenic source during phase-out. We hypothesize that the persistent source is likely natural and the time variant component is an artifact resulting from a slight underestimation of anthropogenic emissions.

Schmale, Julia, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, Rita Traversi, Stefania Gilardoni, Mauro Mazzola, James Laing and Philip Hopke, (2022), Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories, Atmospheric Chemistry and Physics, 22, 5, 3067-3096, 10.5194/acp-22-3067-2022

Abstract

Abstract. Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through September), when atmospheric transport patterns change, and precipitation is more frequent, local Arctic sources, i.e., natural sources of aerosols and precursors, play an important role. Over the last few decades, significant reductions in anthropogenic emissions have taken place. At the same time a large body of literature shows evidence that the Arctic is undergoing fundamental environmental changes due to climate forcing, leading to enhanced emissions by natural processes that may impact aerosol properties. In this study, we analyze 9 aerosol chemical species and 4 particle optical properties from 10 Arctic observatories (Alert, Kevo, Pallas, Summit, Thule, Tiksi, Barrow/Utqiaġvik, Villum, and Gruvebadet and Zeppelin Observatory – both at Ny-Ålesund Research Station) to understand changes in anthropogenic and natural aerosol contributions. Variables include equivalent black carbon, particulate sulfate, nitrate, ammonium, methanesulfonic acid, sodium, iron, calcium and potassium, as well as scattering and absorption coefficients, single scattering albedo and scattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emission reductions still show the Arctic haze phenomenon. Second, long-term trends are studied using the Mann–Kendall Theil–Sen slope method. We find in total 41 significant trends over full station records, i.e., spanning more than a decade, compared to 26 significant decadal trends. The majority of significantly declining trends is from anthropogenic tracers and occurred during the haze period, driven by emission changes between 1990 and 2000. For the summer period, no uniform picture of trends has emerged. Twenty-six percent of trends, i.e., 19 out of 73, are significant, and of those 5 are positive and 14 are negative. Negative trends include not only anthropogenic tracers such as equivalent black carbon at Kevo, but also natural indicators such as methanesulfonic acid and non-sea-salt calcium at Alert. Positive trends are observed for sulfate at Gruvebadet. No clear evidence of a significant change in the natural aerosol contribution can be observed yet. However, testing the sensitivity of the Mann–Kendall Theil–Sen method, we find that monotonic changes of around 5 % yr−1 in an aerosol property are needed to detect a significant trend within one decade. This highlights that long-term efforts well beyond a decade are needed to capture smaller changes. It is particularly important to understand the ongoing natural changes in the Arctic, where interannual variability can be high, such as with forest fire emissions and their influence on the aerosol population. To investigate the climate-change-induced influence on the aerosol population and the resulting climate feedback, long-term observations of tracers more specific to natural sources are needed, as well as of particle microphysical properties such as size distributions, which can be used to identify changes in particle populations which are not well captured by mass-oriented methods such as bulk chemical composition.

Sedlar, J., L. D. Riihimaki, D. D. Turner, J. Duncan, B. Adler, L. Bianco, K. Lantz, J. Wilczak, E. Hall, C. Herrera and Gary B. Hodges, (2022), Investigating the Impacts of Daytime Boundary Layer Clouds on Surface Energy Fluxes and Boundary Layer Structure During CHEESEHEAD19, Journal of Geophysical Research: Atmospheres, 127, 5, 10.1029/2021JD036060

Abstract

Studies of land-atmosphere interactions under a clear sky and low cumulus cloud conditions are common from long-term observatories like at the southern great plains. How well the relationships and responses of surface radiative and turbulent heat fluxes determined from these investigations hold for more heterogeneous surfaces in other climate regimes, however, is uncertain. In this study, detailed observations of the surface energy budget and daytime boundary layer properties are analyzed using measurements from the Chequamegon Heterogenous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, July-October 2019, across a heterogeneous forested landscape of northern Wisconsin. A cloud regime framework is employed to classify consecutive periods of clear skies from lower atmosphere stratiform and cumulus clouds. A seasonal transition from low cumulus to low stratiform periods occurred, together with a diurnal pattern in cloudy or clear sky period dominance. Radiative forcing was highly dependent on sky conditions, leading to changes in the redistribution efficiency of radiative energy by the surface turbulent heat fluxes. During CHEESEHEAD19, small Bowen ratios dominated with daytime latent heat fluxes three times as large as sensible heat fluxes for all sky conditions studied; the forested region, therefore, falls within an energy-limited regime. The depth of the daytime mixed layer depended upon the sky condition and thermodynamic setting; deeper mixed layers occurred during periods of low cumulus and not clear skies. Profiles of vertical velocity were found to have enhanced variance under low cumulus compared to clear sky periods, suggesting potential for cloud feedbacks on boundary layer structure and surface energy fluxes.

T
Thompson, Chelsea R., Steven C. Wofsy, Michael J. Prather, Paul A. Newman, Thomas F. Hanisco, Thomas B. Ryerson, David W. Fahey, Eric C. Apel, Charles A. Brock, William H. Brune, Karl Froyd, Joseph M. Katich, Julie M. Nicely, Jeff Peischl, Eric Ray, Patrick R. Veres, Siyuan Wang, Hannah M. Allen, Elizabeth Asher, Huisheng Bian, Donald Blake, Ilann Bourgeois, John Budney, T. Paul Bui, Amy Butler, Pedro Campuzano-Jost, Cecilia Chang, Mian Chin, Róisín Commane, Gus Correa, John D. Crounse, Bruce Daube, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, James W. Elkins, Arlene M. Fiore, Clare M. Flynn, Hao Guo, Samuel R. Hall, Reem A. Hannun, Alan Hills, Eric J. Hintsa, Alma Hodzic, Rebecca S. Hornbrook, L. Greg Huey, Jose L. Jimenez, Ralph F. Keeling, Michelle J. Kim, Agnieszka Kupc, Forrest Lacey, Leslie R. Lait, Jean-Francois Lamarque, Junhua Liu, Kathryn McKain, Simone Meinardi, David O. Miller, Stephen A. Montzka, Fred L. Moore, Eric J. Morgan, Daniel M. Murphy, Lee T. Murray, Benjamin A. Nault, J. Andrew Neuman, Louis Nguyen, Yenny Gonzalez, Andrew Rollins, Karen Rosenlof, Maryann Sargent, Gregory Schill, Joshua P. Schwarz, Jason M. St. Clair, Stephen D. Steenrod, Britton B. Stephens, Susan E. Strahan, Sarah A. Strode, Colm Sweeney, Alexander B. Thames, Kirk Ullmann, Nicholas Wagner, Rodney Weber, Bernadett Weinzierl, Paul O. Wennberg, Christina J. Williamson, Glenn M. Wolfe and Linghan Zeng, (2022), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bulletin of the American Meteorological Society, 103, 3, E761-E790, 10.1175/BAMS-D-20-0315.1

Abstract

This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.